Future of the Environment

The insect leading the way on cancer research

Joaquín de Navascués
Research Fellow, Cardiff University
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Future of the Environment?
The Big Picture
Explore and monitor how Future of the Environment is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Future of the Environment

Cancer research is a global effort involving millions of people, and the fruit fly Drosophila melanogaster – which has been helping our understanding of the disease for decades – is still illuminating the most fundamental part of this process: the beginning.

When praising the fly as a research organism, I am an interested party. I started working with this insect in 1999, and visitors to our institute rewarded my enthusiasm for Drosophila with the nickname “Spanish fly man”. I find fascinating the capacity of the fly to tell us about how cells use genetic information to interact with each other and make decisions about their behaviour. If cells make wrong decisions it can result in them building the rogue structures we know as tumours.

More than half the human disease genes have an equivalent in Drosophila. This is why Drosophila have been used for over a century to investigate the fundamental mechanisms of inheritance and have turned out to be a great tool for understanding the function of human genes.

Discussed at highest levels

In 2008 Sarah Palin, then candidate for US vice-president, dismissed research in fruit flies as “having little or nothing to do with the public good”, contrasting it with the need to spend tax money on research on cognitive disorders. Some of these disorders, however, are being successfully modelled in Drosophila. As recently as last February, US senator Rand Paul used fly research into sex and the ageing process to attack funding decisions at the US National Institutes of Health.

Both Palin’s and Paul’s comments were embarrassingly misinformed, which earned rather vitriolic responses from the media, but highlight how easy it can be to under-appreciate the research power of the fruit fly.

Working with the humble fruit fly is fast and cheap, and allows scientific answers with great detail on virtually any general biological problem. For instance it was using flies that we learned our genes reside in the chromosomes in linear order, and that ionising radiation can cause mutations.

Drosophila researchers work across a whole range of areas, from stem cell biology to neurobiology, genomics, cancer, evolution, ecology, immunity, ageing, metabolism. All areas of obvious economic and societal interest. And since Drosophila was established as a research workhorse around 1910 it has accumulated an important list of contributions, some rewarded with the Nobel Prize in Physiology or Medicine (in 1933, 1946, 1995, 2006 and 2011, for discoveries ranging from embryonic development to the activation of the innate immune response to fight infections).

Genes and cancer

The fly contributions to cancer research started in 1967, with the discovery of the first tumour suppressor gene (genes whose function is to prevent cells from becoming cancerous).

Drosophila has been particularly brilliant at the identification of new genes and drosophilists name new genes after the defects observed when the fly lacks their function and similar defective genes in humans have also been similarly named. Malfunctioning of the hedgehog or porcupine genes – named after fly maggots with an excessive number of spikes in their belly (which allow them to crawl) – and the notch gene (from flies with a serrated wing margin) in humans, are linked to cancers of the blood, breast, intestine, skin or brain.

The molecular similarity between fly and human genes allow studying human disease in Drosophila, sometimes before experimentation in larger animals is required.

Drug screening

Genetic similarity also leads to other interesting developments. In the last decade, Drosophila use in human disease research has expanded with the first drug screens in flies. Compared with screening in cells cultured in a dish, fly screens filter out drugs that would have harmful side effects in the whole organism, or are poorly absorbed in the intestine, or degraded during digestion. This saves money in a drug development project.

Of course, Drosophila has important limitations when it comes to learning about human disease: flies lack breasts, a prostate, or lungs (flies breathe through a network of rigid pipes). It is still possible, however, to study the genes associated with human cancers in these and other tissues.

We can breed flies with genetic alterations mimicking those in specific cancers, and then look for an organ in the fly (such as the wing – it does not have to be the “original” human organ) where these alterations lead to cancerous growth, and study how this happens. For instance, working alongside Matt Smalley and Alan Clarke, we are developing models at Cardiff University to study gene functions that we know are important for breast and prostate cancer, but whose functional details are largely unknown, and costly to pursue with research using mice.

Drosophila has a long history of research in bio-medicine, and its capabilities as a model are being expanded and updated every year. It is an exciting and fundamental system to work with, that could transform the way research into cancer develops in the future. So after more than a century of use, these humble flies are still at the cutting edge of cancer research.

This article is published in collaboration with The Conversation. Publication does not imply endorsement of views by the World Economic Forum.

To keep up with the Agenda subscribe to our weekly newsletter.

Author: Joaquín de Navascués Research Fellow in the European Cancer Stem Cell Research Institute at Cardiff University

Image: A radiologist examines the brain X-rays of a patient who underwent a cancer prevention medical check-up. REUTERS/Rupak De Chowdhuri. 

The Conversation

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

We’ve trapped nature action in a silo. An ecological mindset in leadership can help

Shruthi Vijayakumar and Matt Sykes

April 19, 2024

1:45

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum