Emerging Technologies

Could the discovery of ‘ageing’ genes help us live longer?

Peter Rüegg
Editor, ETH
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Emerging Technologies?
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Future of Global Health and Healthcare

This article is published in collaboration with ETH Zurich.

Driven by the quest for eternal youth, humankind has spent centuries obsessed with the question of how it is exactly that we age. With advancements in molecular genetic methods in recent decades, the search for the genes involved in the ageing process has greatly accelerated.

Until now, this was mostly limited to genes of individual model organisms such as the C. elegans nematode, which revealed that around one percent of its genes could influence life expectancy. However, researchers have long assumed that such genes arose in the course of evolution and in all living beings whose cells have a preserved a nucleus – from yeast to humans.

Combing through 40,000 genes

Researchers at ETH Zurich and the JenAge consortium from Jena have now systematically gone through the genomes of three different organisms in search of the genes associated with the ageing process that are present in all three species – and thus derived from the genes of a common ancestor. Although they are found in different organisms, these so-called orthologous genes are closely related to each other, and they are all found in humans, too.

In order to detect these genes, the researchers examined around 40,000 genes in the nematode C. elegans, zebra fish and mice. By screening them, the scientists wanted to determine which genes are regulated in an identical manner in all three organisms in each comparable ageing stage – young, mature and old; i.e. either are they upregulated or downregulated during ageing.

As a measure of gene activity, the researchers measured the amount of messenger RNA (mRNA) molecules found in the cells of these animals. mRNA is the transcript of a gene and the blueprint of a protein. When there are many copies of an mRNA of a specific gene, it is very active; the gene is upregulated. Fewer mRNA copies, to the contrary, are regarded as a sign of low activity, explains Professor Michael Ristow, coordinating author of the recently published study and Professor of Energy Metabolism at ETH Zurich.

Out of this volume of information, the researchers used statistical models to establish an intersection of genes that were regulated in the same manner in the worms, fish and mice. This showed that the three organisms have only 30 genes in common that significantly influence the ageing process.

Reduce gene activity, live longer

By conducting experiments in which the mRNA of the corresponding genes were selectively blocked, the researchers pinpointed their effect on the ageing process in nematodes. With a dozen of these genes, blocking them extended the lifespan by at least five percent.

One of these genes proved to be particularly influential: the bcat-1 gene. “When we blocked the effect of this gene, it significantly extended the mean lifespan of the nematode by up to 25 percent,” says Ristow.

The researchers were also able to explain how this gene works: the bcat-1 gene carries the code for the enzyme of the same name, which degrades so-called branched-chain amino acids. Naturally occurring in food protein building blocks, these include the amino acids L-leucine, L-isoleucine and L-valine.

When the researchers inhibited the gene activity of bcat-1, the branched-chain amino acids accumulated in the tissue, triggering a molecular signalling cascade that increased longevity in the nematodes. Moreover, the timespan during which the worms remained healthy was extended. As a measure of vitality, the researchers measured the accumulation of ageing pigments, the speed at which the creatures moved, and how often the nematodes successfully reproduced. All of these parameters improved when the scientists inhibited the activity of the bcat-1 gene.

The scientists also achieved a life-extending effect when they mixed the three branched-chain amino acids into the nematodes’ food. However, the effect was generally less pronounced because the bcat-1 gene was still active, which meant that the amino acids continued to be degraded and their life-extending effects could not develop as effectively.

Conserved mechanism

Ristow has no doubt that the same mechanism occurs in humans. “We looked only for the genes that are conserved in evolution and therefore exist in all organisms, including humans,” he says.

In the present study, he and his Jena colleagues from the Leibniz Institute on Aging, the Leibniz Institute for Natural Product Research and Infection Biology, the Jena University Hospital and the Friedrich Schiller University purposefully opted not to study the impact on humans. But a follow-up study is already being planned. “However we cannot measure the life expectancy of humans for obvious reasons,” says the ETH professor. Instead, the researchers plan to incorporate various health parameters such as cholesterol or blood sugar levels in their study to obtain indicators on the health status of their subjects.

Health costs could be massively reduced

Ristow says that the multiple branched-chain amino acids are already being used to treat liver damage and are also added to sport nutrition products. “However, the point is not for people to grow even older, but rather to stay healthy for longer,” says the internist. The study will deliver important indicators on how the ageing process could be influenced and how age-related diseases such as diabetes or high blood pressure could be prevented. In light of unfavourable demographics and steadily increasing life expectancy, it is important to extend the healthy life phase and not to reach an even higher age that is characterised by chronic diseases, argue the researchers. With such preventive measures, an elderly person could greatly improve their quality of life while at the same time cutting their healthcare costs by more than half.

Reference

Mansfeld J, et al. Branched-chain amino acid catabolism is a conserved regulator of physiological ageing. Nature Comm., published online December 1st 2015; DOI 10.1038/ncomms10043

Publication does not imply endorsement of views by the World Economic Forum.

To keep up with the Agenda subscribe to our weekly newsletter.

Author: Peter Rüegg studied Biology at ETH Zurich with focus on Ecology, Phytogeography and Biosystematics and is now working in the News & Media Relations team at ETH.

Image: An elderly man stands. REUTERS/Ricardo Moraes.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

More on Emerging Technologies
See all

Shaping the future of artificial intelligence: Reflections from the AI Governance Alliance

Cathy Li

June 13, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum