Agriculture, Food and Beverage

Is this the best method for gene transfer?

A scientist conducts genetic research at the International Atomic Energy Agency (IAEA) laboratories in Seibersdorf, some 50 kilometres (some 31 miles) southeast of Vienna, October 14, 2009. Better varieties of under-utilized food and industrial crops are developed by use of modern biotechnologies and radioactive mutation at the Plant Breeding Unit of the IAEA.

Researchers have devised a 'honeycomb' system for gene transfer which kills fewer cells than traditional methods. Image: REUTERS/Herwig Prammer

Mark Michaud
Associate Director of Communication, University of Rochester
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Agriculture, Food and Beverage?
The Big Picture
Explore and monitor how Agriculture, Food and Beverage is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Agriculture, Food and Beverage

Scientists have created a new and highly efficient method for gene transfer. The technique, which involves culturing and transfecting cells with genetic material on an array of carbon nanotubes, appears to overcome the limitations of other gene editing technologies.

“This platform holds the potential to make the gene transfer process more robust and decrease toxic effects, while increasing amount and diversity of genetic cargo we can deliver into cells,” says Ian Dickerson, an associate professor in the neuroscience department at the University of Rochester Medical Center and coauthor of the paper in the journal Small.

“This represents a very simple, inexpensive, and efficient process that is well-tolerated by cells and can successfully deliver DNA into tens of thousands of cells simultaneously,” says coauthor Michael Schrlau, an assistant professor in the Kate Gleason College of Engineering at RIT.

Gene transfer therapies have long held great promise in medicine. New gene editing techniques, such as CRISPR-Cas9, now enable researchers to precisely target segments of genetic code giving rise to a range of potential scientific and medical applications from fixing genetic defects, to manipulating stem cells, to reengineering immune cells to fight infection and cancer.

Scientists currently employ several different methods to insert new genetic instructions into cells, including creating small holes in the cell membrane using electrical pulses, injecting DNA into cells using a device called a “gene gun,” and employing viruses to “infect” cells with new genetic code.

However, all of these methods tend to suffer from two fundamental problems. First, these processes can be highly toxic, leaving scientists with too few healthy cells to work with. And second, these methods are restricted in the amount of genetic information—or “payload”—they can deliver into the cells, limiting their application. These techniques can also be time consuming and expensive.

Masoud Golshadi, first author of the paper, fabricated the new device in the Schrlau Nano-Bio Interface Laboratory at RIT. Using a process called chemical vapor deposition, the researchers created a structure akin to a honeycomb consisting of millions of densely packed carbo nanotubes with openings on both sides of a thin disk shaped membrane.

Researchers in the Dickerson Lab at at the University of Rochester employed the device to culture a series of different human and animal cells. After 48 hours, the cells were bathed in a medium that contained liquid DNA. The carbon nanotubes acted as conduits drawing the genetic material into the cells. Using this method, the researchers observed that 98 percent of the cells survived and 85 percent were successfully transfected with the new genetic material.

The mechanism of DNA transfer is still under investigation, but the researchers suspect it may be via a process called enhanced endocytosis, a method by which cells transfer bundles of proteins back and forth through the cell membrane.

The device has also shown the ability to successfully culture a wide range of cell types, including cells that are typically difficult to grow and keep alive, such as immune cells, stem cells, and neurons.

The researchers are now optimizing the technology in hopes that the device—which is inexpensive to produce—can be made available to researchers and, ultimately, used to develop new treatments for a range of diseases.

Funding from the Schmitt Program on Integrative Brain Research, the American-German Partnership to Advance Biomedical and Energy Applications of Nanocarbon, Texas Instruments, the Feinberg Foundation, and the Weizmann Institute of Science supported the work.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

5 ways CRISPR gene editing is shaping the future of food and health

Douglas Broom

April 3, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum