Climate Change

This could be a new tool to fight global warming

Ice peel off from one of the sides of the Perito Moreno glacier in a process of a unexpected rupture during the southern hemisphere's winter months, near the city of El Calafate in the Patagonian province of Santa Cruz, southern Argentina, July 7, 2008. The Perito Moreno glacier, part of the Los Glaciares National Park, a World Heritage site, measures 250 square kilometers (97 square miles), and is one of the few glaciers which is advancing instead of retreating. REUTERS/Andres Forza (ARGENTINA) - RTX7QJ5

Ice peeling off from a glacier. Image: REUTERS/Andres Forza

David Keith
Professor of Applied Physics, Harvard Kennedy School
Gernot Wagner
Economist, Harvard's School of Engineering and Applied Sciences
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Climate Change?
The Big Picture
Explore and monitor how Climate Change is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Climate Change

The last time the atmosphere held as much carbon dioxide as it does today was about three million years ago – a time when sea levels were 10-30 meters higher than they are now. Climate models have long struggled to duplicate those large fluctuations in sea levels – until now. Indeed, for the first time, a high-quality model of Antarctic ice and climate has been able to simulate these large swings. That is smart science, but it brings devastating news.

The new model shows that melting in Antarctica alone could increase global sea levels by as much as one meter (3.2 feet) by the end of this century – well above prior estimates. Worse, it suggests that even extraordinary success at cutting emissions would not save the West Antarctic Ice Sheet, locking in eventual sea-level increases of more than five meters. As little as one meter could put at risk entire cities, from Miami to Mumbai, and cause enormous economic disruption.

 2015 was the hottest year on record
Image: NASA/GISS

We need to turn down the heat – and fast. To this end, albedo modification – a kind of geoengineering intended to cool the planet by increasing the reflectivity of the earth’s atmosphere – holds tremendous promise.

Injecting synthetic aerosols that reflect sunlight into the stratosphere, for example, could help counter the warming caused by greenhouse gases. The mechanism is similar to wearing a white shirt in the summer: white reflects sunlight and cools what is underneath, whereas darker colors absorb sunlight and heat.

To be sure, even in the best-case scenario, solar geoengineering alone could not stabilize the world’s climate. For that, we must both stop pumping carbon pollution into the atmosphere and learn how to remove what is already there. That is why emissions cuts should receive the lion’s share of resources devoted to combating climate change.

But, as the recent study shows, emissions cuts alone cannot save the West Antarctic Ice Sheet and prevent a drastic sea-level rise. If they are pursued in conjunction with moderate albedo modification, however, there is a chance of halting rising temperatures, helping to keep the world under 1.5° Celsius above pre-industrial levels, the more ambitious target agreed at the Paris climate talks last December. (It should be noted that, given carbon-cycle feedbacks, such as the thawing of permafrost, there is a chance that the world would face a 1.5°C rise, even if emissions were eliminated today.)

Most of the world’s state-of-the-art climate models have explored albedo modification, and each of them has found that the process does have the potential to mitigate climate change. Beyond limiting total warming, it can help to check the rise in peak temperatures, decreasing the risk of destructive heat waves. And it seems to be particularly effective at reducing extreme rainfall, which holds profound implications for minimizing flood damage.

Albedo modification remains uncertain and risky, owing partly to a dearth of organized research into the subject. And, in fact, albedo modification would undoubtedly make some things worse. But there is not a single climate model run that shows that a moderate intervention would make any region worse off overall. Moreover, the large potential upside, measured in trillions of dollars, contrasts with low direct costs – in the single-digit billions for full-scale deployment. In fact, albedo modification is so cheap that direct costs will not be the deciding issue. Instead, it is a risk-risk trade-off – one that will require more research to assess.

Given the lack of knowledge, no sensible person would push for deploying albedo modification today. But it would make no sense to ignore its potential. After all, no one would argue that we should abandon research on a promising cancer drug because it is unproven.

The US National Academy of Sciences first called attention to what it then described as “climate modification” in a 1983 report. It recommended careful research in 1992 and again in 2015. Major environmental groups such as the Environmental Defense Fund and the Natural Resources Defense Council support careful, small-scale research. Yet no such program exists.

One reason for this is concern about the diversion of resources from other approaches. And, of course, there are tradeoffs. But the US, for example, has an annual climate science budget of around $3 billion. An exploratory solar geoengineering program, costing only a few tens of millions of dollars per year, is entirely feasible.

A larger obstacle to progress is fear that more attention to geoengineering solutions would sap motivation to cut emissions. Maybe so, but it would be barking mad to take up smoking simply because an experimental cancer treatment showed some promise on a lab rat. And, in fact, it is conceivable that a concerted effort to advance research on albedo modification could spur action to cut emissions, much like a graphic look at the side effects of chemotherapy prompts some to stop smoking.

Whichever reaction prevails, the moral imperative to explore a technology that can protect the poorest and most vulnerable this century would seem to trump amorphous concerns that doing so could weaken the incentive to pursue solutions that would largely benefit future generations.

The last time the atmosphere held as much carbon dioxide as it does today was about three million years ago – a time when sea levels were 10-30 meters higher than they are now. Climate models have long struggled to duplicate those large fluctuations in sea levels – until now. Indeed, for the first time, a high-quality model of Antarctic ice and climate has been able to simulate these large swings. That is smart science, but it brings devastating news.

The new model shows that melting in Antarctica alone could increase global sea levels by as much as one meter (3.2 feet) by the end of this century – well above prior estimates. Worse, it suggests that even extraordinary success at cutting emissions would not save the West Antarctic Ice Sheet, locking in eventual sea-level increases of more than five meters. As little as one meter could put at risk entire cities, from Miami to Mumbai, and cause enormous economic disruption.

We need to turn down the heat – and fast. To this end, albedo modification – a kind of geoengineering intended to cool the planet by increasing the reflectivity of the earth’s atmosphere – holds tremendous promise.

Injecting synthetic aerosols that reflect sunlight into the stratosphere, for example, could help counter the warming caused by greenhouse gases. The mechanism is similar to wearing a white shirt in the summer: white reflects sunlight and cools what is underneath, whereas darker colors absorb sunlight and heat.

To be sure, even in the best-case scenario, solar geoengineering alone could not stabilize the world’s climate. For that, we must both stop pumping carbon pollution into the atmosphere and learn how to remove what is already there. That is why emissions cuts should receive the lion’s share of resources devoted to combating climate change.

But, as the recent study shows, emissions cuts alone cannot save the West Antarctic Ice Sheet and prevent a drastic sea-level rise. If they are pursued in conjunction with moderate albedo modification, however, there is a chance of halting rising temperatures, helping to keep the world under 1.5° Celsius above pre-industrial levels, the more ambitious target agreed at the Paris climate talks last December. (It should be noted that, given carbon-cycle feedbacks, such as the thawing of permafrost, there is a chance that the world would face a 1.5°C rise, even if emissions were eliminated today.)

Most of the world’s state-of-the-art climate models have explored albedo modification, and each of them has found that the process does have the potential to mitigate climate change. Beyond limiting total warming, it can help to check the rise in peak temperatures, decreasing the risk of destructive heat waves. And it seems to be particularly effective at reducing extreme rainfall, which holds profound implications for minimizing flood damage.

Albedo modification remains uncertain and risky, owing partly to a dearth of organized research into the subject. And, in fact, albedo modification would undoubtedly make some things worse. But there is not a single climate model run that shows that a moderate intervention would make any region worse off overall. Moreover, the large potential upside, measured in trillions of dollars, contrasts with low direct costs – in the single-digit billions for full-scale deployment. In fact, albedo modification is so cheap that direct costs will not be the deciding issue. Instead, it is a risk-risk trade-off – one that will require more research to assess.

Given the lack of knowledge, no sensible person would push for deploying albedo modification today. But it would make no sense to ignore its potential. After all, no one would argue that we should abandon research on a promising cancer drug because it is unproven.

The US National Academy of Sciences first called attention to what it then described as “climate modification” in a 1983 report. It recommended careful research in 1992 and again in 2015. Major environmental groups such as the Environmental Defense Fund and the Natural Resources Defense Council support careful, small-scale research. Yet no such program exists.

One reason for this is concern about the diversion of resources from other approaches. And, of course, there are tradeoffs. But the US, for example, has an annual climate science budget of around $3 billion. An exploratory solar geoengineering program, costing only a few tens of millions of dollars per year, is entirely feasible.

A larger obstacle to progress is fear that more attention to geoengineering solutions would sap motivation to cut emissions. Maybe so, but it would be barking mad to take up smoking simply because an experimental cancer treatment showed some promise on a lab rat. And, in fact, it is conceivable that a concerted effort to advance research on albedo modification could spur action to cut emissions, much like a graphic look at the side effects of chemotherapy prompts some to stop smoking.

Whichever reaction prevails, the moral imperative to explore a technology that can protect the poorest and most vulnerable this century would seem to trump amorphous concerns that doing so could weaken the incentive to pursue solutions that would largely benefit future generations.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Climate ChangeFuture of the Environment
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Two years to save the planet, says UN climate chief, and other nature and climate stories you need to read this week

Johnny Wood

April 15, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum