Emerging Technologies

Coming soon, a laptop you don't need to charge for over a year

Electric pylons are seen after sunset near the town of Slutsk, south of Minsk July 18, 2014.  REUTERS/Vasily Fedosenko (BELARUS - Tags: ENERGY BUSINESS)

These new transistors are able to scavenge power from its surrounding environment. Image: REUTERS/Vasily Fedosenko

Futurism
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Emerging Technologies?
The Big Picture
Explore and monitor how Fourth Industrial Revolution is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Emerging Technologies

SCAVENGING POWER

As electronic devices become more compact and powerful, conventional methods for manufacturing electrical components simply won’t do. The problem lies in the fact that current systems require a huge battery and their components are too bulky.

However, that all could change, as engineers from the University of Cambridge have created an ultra low power transistor that can run for a long time without a power source.

Basically, transistors are semiconductor devices that function like a faucet. Turn a transistor on and the electricity flows, turn it off and the flow stops. When a transistor is off however, some electric current could still flow through, just like a leaky faucet. This current, which is called a near-off-state, was exploited by the engineers to power the new transistors.

Transistor battery
Image: University of Cambridge


These new transistors are able to scavenge power from its surrounding environment allowing a battery to last longer. Dr Sungsik Lee, the paper’s first author, also from the Department of Engineering says, “if we were to draw energy from a typical AA battery based on this design, it would last for a billion years.” The new design could be produced in low temperatures and they are versatile enough to be printed on materials like glass, paper, and plastic.

SMALLER DEVICES

The transistor’s design also utilizes a ‘non-desirable’ characteristic, namely the ‘Schottky barrier’ to create smaller transistors. Transistors today cannot be manufactured into smaller sizes since the smaller a transistor gets, the more its electrodes influence each other, causing a non-functioning transistor. The use of the Schottky barrier in the new design creates seal between the electrodes that make them work independently from each other.

According to Arokia Nathan of Cambridge’s Department of Engineering, the second author of the paper, this new design can see use in various sensor interfaces and wearable devices that require only a low amount of power to run. Professor Gehan Amaratunga, Head of the Electronics, Power and Energy Conversion Group at Cambridge’s Engineering Department sees its use in more autonomous electronics that can harness energy from their environments similar to a bacteria.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Emerging TechnologiesFourth Industrial Revolution
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

South Korean nuclear fusion reactor sets new record, and other technology news you need to know

Sebastian Buckup

April 19, 2024

1:31

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum