Fourth Industrial Revolution

This camera shows you how you get ill

A scientist uses a microscope to check samples of human skin obtained from a 3D bioprinter prototype at Carlos III University in Getafe, Spain, February 2, 2017. Picture taken February 2, 2017. REUTERS/Sergio Perez - RTX3135R

The 3D "virus cam" will be able to capture the "first contacts of the virus with the cell surface" says Kevin Welsher. Image: REUTERS/Sergio Perez

Kara Manke
Science Writer, News Office, Duke University
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Fourth Industrial Revolution?
The Big Picture
Explore and monitor how Fourth Industrial Revolution is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Future of Global Health and Healthcare

A team of researchers has developed a microscope powerful enough to see a virus in the act of infecting a cell.

The team’s new 3D “virus cam” can spy on tiny viral germs as they wriggle around in real time. In a video caught by the microscope, you can watch as a lentivirus bounces and jitters through an area a little wider that a human hair.

Next, they hope to develop this technique into a multi-functional “magic camera” that will let them see not only the dancing viruses, but also the much larger cell membranes they are trying breech.

“Really what we are trying to investigate is the very first contacts of the virus with the cell surface—how it calls receptors, and how it sheds its envelope,” says group leader Kevin Welsher, assistant professor of chemistry at Duke University.

“We want to watch that process in real time, and to do that, we need to be able to lock on to the virus right from the first moment,” he says.

This isn’t the first microscope that can track real-time, 3D motions of individual particles. In fact, as a postdoctoral researcher, Welsher built an earlier model and used it to track a bright fluorescent bead as it gets stuck in the membrane of a cell.

Image: Futurity

But the new virus cam, built by postdoc Shangguo Hou, can track particles that are faster-moving and dimmer compared to earlier microscopes. “We were trying to overcome a speed limit, and we were trying to do so with the fewest number of photons collected possible,” Welsher says.

The ability to spot dimmer particles is particularly important when tracking viruses, Welsher says. These small bundles of proteins and DNA don’t naturally give off any light, so to see them under a microscope, researchers first have to stick something fluorescent on them. But many bright fluorescent particles, such as quantum dots, are pretty big compared to the size of most viruses. Attaching one is kind of like sticking a baseball onto a basketball—there is a good chance it might affect how the virus moves and interacts with cells.

Have you read?

The new microscope can detect the fainter light given off by much smaller fluorescent proteins—which, if the virus is a basketball, are approximately the size of a pea. Fluorescent proteins can also be inserted to the viral genome, which allows them to be incorporated into the virus as it is being assembled.

“That was the big move for us,” Welsher says, “We didn’t need to use a quantum dot, we didn’t need to use an artificial fluorescent bead. As long as the fluorescent protein was somewhere in the virus, we could spot it.” To create their viral video, Welsher’s team enlisted the university’s Viral Vector Core to insert a yellow fluorescent protein into their lentivirus.

Now that the virus-tracking microscope is up-and-running, the team is busy building a laser scanning microscope that will also be able to map cell surfaces nearby.

“So if we know where the particle is, we can also image around it and reconstruct where the particle is going,” Welsher says. “We hope to adapt this to capturing viral infection in real time.”

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

IDEA: Investing in the Digital Economy of Azerbaijan

Sara Al Hudaithy and Anu Devi

June 4, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum