Sustainable Development

Why bacteria could be the future of biofuel

Algae grown in a special water system is seen at Israeli biofuel firm, Univerve's demonstration site at Bar-Ilan University, near Tel Aviv December 15, 2013. Israel plans to cut oil use in transportation by 60 percent by 2025, an aggressive target by world standards, and will tap into its newfound natural gas deposits to make it happen. It is also investing heavily to help start-ups developing battery and biofuel technologies. Picture taken December 15, 2013. REUTERS/Nir Elias (ISRAEL - Tags: ENERGY ENVIRONMENT)

New production techniques have the potential to greatly increase biobutanol's viability as an alternative to traditional fossil fuels. Image: REUTERS/Nir Elias

National University of Singapore
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Sustainable Development?
The Big Picture
Explore and monitor how Sustainable Development is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Sustainable Development

A bacterium in mushroom crop residue can contribute to greener and cheaper biofuel production, according to new research.

A team of engineers recently discovered that a naturally occurring bacterium, Thermoanaerobacterium thermosaccharolyticum TG57, can directly convert cellulose, a plant-based material, to biobutanol.

“The production of biofuels using non-food feedstocks can improve sustainability and reduce costs greatly.”

Image: Statista

He Jianzhong, associate professor from the civil and environmental engineering department at the National University of Singapore Faculty of Engineering, and his colleagues first discovered the novel TG57 strain in 2015. They went on to culture the strain to examine its properties.

“The production of biofuels using non-food feedstocks can improve sustainability and reduce costs greatly. In our study, we demonstrated a novel method of directly converting cellulose to biobutanol using the novel TG57 strain. This is a major breakthrough in metabolic engineering and exhibits a foundational milestone in sustainable and cost-effective production of renewable biofuels and chemicals,” He explains.

Traditional biofuels are produced from food crops. This approach is costly and competes with food production in the use of land, water, energy, and other environmental resources.

Many scientists believe biofuels produced from unprocessed cellulosic materials such as plant biomass, as well as agriculture, horticultural, and organic waste could meet growing energy demands without increasing greenhouse gas emissions resulting from the burning of fossil fuels. These cellulosic materials are in great abundance, environmentally friendly, and economically sustainable.

Among various types of biofuels, biobutanol offers great promise as a gasoline substitute because of its high energy density and superior properties. It can directly replace gasoline in car engines without any modification. However, commercial production of biobutanol has been hampered by the lack of potent microbes capable of converting cellulosic biomass into biofuels. The current technique is costly and requires complicated chemical pre-treatment.

The new technique could potentially be a game-changing technology for cost effective and sustainable biofuel production.

Have you read?

Spent mushroom compost—typically composed of wheat straw and saw dust—is the residual compost waste mushroom farming generates. To obtain the unique TG57 strain, researchers left the microorganisms in the waste to evolve naturally for more than two years.

The fermentation process is simple, and doesn’t require complicated pre-treatment or genetic modification of the microorganisms. When the researchers add cellulose, the bacterium simply digests it to produce butanol as the main product.

Moving forward, the research team will continue to optimize the performance of the TG57 strain, and further engineer it to enhance biobutanol ratio and yield using molecular genetic tools.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Sustainable DevelopmentEnergy Transition
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Al Gore: 3 ways to scale green investment in 2024

Andrea Willige

February 21, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum