Health and Healthcare

This electronic skin lets amputees feel pain through their prosthetics

Egyptian swimmer Omar Hegazy, who is the first one-legged man to swim across the Gulf of Aqaba from Egypt to Jordan, works out at a gym in Cairo, Egypt May 20, 2017. Picture taken May 20, 2017. REUTERS/Mohamed Abd El Ghany

The e-dermis could allow patients to feel pain and other sensations. Image: REUTERS/Mohamed Abd El Ghany

Kristin Houser
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Health and Healthcare?
The Big Picture
Explore and monitor how Health and Healthcare is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Health and Healthcare

Up until the 20th century, wearing a prosthetic limb wasn’t all that great. They were often unwieldy wooden contraptions with both form and function that fell far short of their natural counterparts. Today, though, we have prosthetics that we can control with our minds, that predict movement, and that fit perfectly thanks to 3D printing.

Still, even the most advanced prosthetics have room for improvement. They still don’t give the wearer a ton of feedback about what they’re touching — no temperatures, no textures. That’s why researchers at Johns Hopkins University have created a new electronic dermis (e-dermis). When placed over a prosthetic device, this artificial skin lets an amputee feel pain and other sensations in their missing limb. The researchers published their study Wednesday in the journal Science Robotics.

To create an electronic skin that functions like human skin, the researchers started by looking — where else? — at human skin. They noted that our skin contains a network of receptors that relay a variety of sensations to the brain, letting us know if what we’re touching is sharp or smooth, hot or cold, hard or soft, and so on.

Loading...

They designed their device to transmit two specific sensations: the curvature of an object and its sharpness. They constructed their e-dermis out of a combination of fabric and rubber, adding in layers of sensors to imitate the receptors in human skin. These receptors could detect the sensations of an object — whether it’s sharp, for example — and then send those sensations to the peripheral nerves in an amputee’s residual limb via wires.

To figure out what kind of information the device should send its wearer, the researchers used a technique called transcutaneous electrical nerve stimulation (TENS) to stimulate the peripheral nerves in the amputee’s residual limb and ask what they felt in their phantom limb.

For example, say a certain level of TENS at one location on the residual limb produced a sensation of pain in the amputee’s phantom thumb. The researchers would know to deliver that level of electronic stimulation to that location when the prosthetic’s thumb touched something comparably painful, such as a sharp object.

They detected brain activity using electroencephalography (EEG) to confirm that the process stimulated the phantom limb.

Image: Johns Hopkins University

Essentially, the researchers taught their e-dermis to electronically encode different sensations just like human skin does. One way that could be beneficial? The e-dermis could make prosthetics feel more life-like while protecting them from damage.

“After many years I felt my hand, as if a hollow shell, got filled with life again,” one volunteer told Luke Osborn, co-author of the study, according to The Atlantic. “I can differentiate between pain and not-pain without thinking, instinctively knowing if my arm is in danger.”

Eventually, the e-dermis could even help us give robots the ability to “feel” sensations in a human-like way, the researchers note in a press release. For now, though, giving humans the ability to feel those sensations once again is probably exciting enough.

Have you read?
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Scientists have invented a method to break down 'forever chemicals' in our drinking water. Here’s how

Johnny Wood

April 17, 2024

2:12

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum