Nature and Biodiversity

This is how coronavirus compares to the world's smallest particles

An elderly man exercises in the morning as he faces chimneys emitting smoke behind buildings across the Songhua river in Jilin, Jilin province, February 24, 2013. China's new rulers will focus on consumer-led growth to narrow the gap between rich and poor while taking steps to curb pollution and graft, the government said on Tuesday, tackling the main triggers for social unrest in the giant nation. Picture taken February 24, 2013. REUTERS/Stringer (CHINA - Tags: ENVIRONMENT BUSINESS POLITICS) CHINA OUT. NO COMMERCIAL OR EDITORIAL SALES IN CHINA - GM1E9351DC501

Air pollution is one of the leading causes of death worldwide. Image: REUTERS/Stringer

Carmen Ang
Writer, Visual Capitalist
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Nature and Biodiversity?
The Big Picture
Explore and monitor how Air Pollution is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Air Pollution

  • From COVID-19 to air pollution, lately some of the world's biggest threats have been microscopic in size.
  • This chart shows how different diseases, germs and particles all compare in size.
  • Zika, E-Coli and COVID-19 are some of the smallest particles there are.
particles size comparison science air quality pollution disease germs  atmosphere climate change environment
How particles compare in size. Image: Visual Capitalist

View the high resolution of this infographic by clicking here.

Lately, the world’s biggest threats have been microscopic in size.

From the global COVID-19 pandemic to wildfires ripping through the U.S. West Coast, it seems as though our lungs can’t catch a break, or more aptly, a breath.

But just how small are the particles we’re currently battling? And how does their size compare to other tiny molecules?

Specks too small to see

While the coronavirus that causes COVID-19 is relatively small in size, it isn’t the smallest virus particle out there.

Both the Zika virus and the T4 Bacteriophage—responsible for E. coli—are just a fraction of the size, although they have not nearly claimed as many lives as COVID-19 to date.

Coronavirus particles are smaller than both red or white blood cells, however, a single blood cell is still virtually invisible to the naked eye. For scale, we’ve also added in a single human hair as a benchmark on the upper end of the size range.

particles size comparison science air quality pollution disease germs  atmosphere climate change environment
From small, to smaller. Image: Visual Capitalist

On the other end of the spectrum, pollen, salt, and sand are significantly larger than viruses or bacteria. Because of their higher relative sizes, our body is usually able to block them out—a particle needs to be smaller than 10 microns before it can be inhaled into your respiratory tract.

Because of this, pollen or sand typically get trapped in the nose and throat before they enter our lungs. The smaller particles particles, however, are able to slip through more easily.

Smoky skies: air pollution and wildfires

While the virus causing COVID-19 is certainly the most topical particle right now, it’s not the only speck that poses a health risk. Air pollution is one of the leading causes of death worldwide—it’s actually deadlier than smoking, malaria, or AIDS.

One major source of air pollution is particulate matter, which can contain dust, dirt, soot, and smoke particles. Averaging around 2.5 microns, these particles can often enter human lungs.

At just a fraction of the size between 0.4-0.7 microns, wildfire smoke poses even more of a health hazard. Research has also linked wildfire exposures to not just respiratory issues, but also cardiovascular and neurological issues.

Here’s an animated map by Flowing Data, showing how things heated up in peak wildfire season between August-September 2020:

Loading...

What’s the main takeaway from all this?

There are many different kinds of specks that are smaller than the eye can see, and it’s worth knowing how they can impact human health.

Loading...
Loading...
Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Nature and BiodiversityHealth and Healthcare SystemsIndustries in Depth
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

5 ways sustainable forestry can support climate action, development and biodiversity

Charlotte Kaiser

April 23, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum