Health and Healthcare Systems

These robo-boots could help people struggling with their balance

Candler Hobbs, Georgia Institute of Technology

These boots were made for superhuman balance. Image: Unsplash

Lena Ting
Professor of Biomedical Engineering and Rehabilitation Medicine, Emory University
Gregory S. Sawicki
Associate Professor of Mechanical Engineering and Biological Sciences, Georgia Institute of Technology
Max Shepherd
Assistant Professor of Mechanical and Industrial Engineering and Physical Therapy and Rehabilitation, Northeastern University
Owen Beck
Assistant Professor of Kinesiology and Health Education, The University of Texas at Austin
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Health and Healthcare Systems?
The Big Picture
Explore and monitor how Ageing and Longevity is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Technological Transformation

Loading...
  • Robotic boots could help improve people's balance, according to a new study.
  • A team of researchers has tested powered exoskeletons and prostheses to see if they help, or hinder, people as they lose their balance.
  • They discovered that the faster-than-human-reflexes programming enabled the test subjects to stay upright.
  • It's a first step towards helping older adults or people with stroke or spinal cord injuries with balance issues, they say.

The big idea

Robotic boots providing superhuman reflexes can help your balance. Our new study shows that the key to augmenting balance is to have boots that can act faster than human reaction times.

When people slip or trip, their reactions to regain balance are far slower than some machines can act. For humans, and other animals with legs, it takes time for biological sensors to send signals to the nervous system and then turn on muscles. Robots can act much faster, using wires instead of nerves to send their signals.

But robots are still notoriously bad at balancing, because they can’t yet mimic how humans respond when their balance is challenged. We are biomechanical engineers and rehabilitation physiology researchers who study the neurophysiology of movement. In our study, we sought to answer the question of whether wearable robots – like powered lower-limb exoskeletons or prostheses – can improve balance above and beyond a normal baseline.

We used a motorized floor to literally “pull the rug out” from under healthy young participants – pitching them forward toward the ground. We asked them to stay balanced with their feet in place, but sometimes the slip was so large that they had to take a step to avoid face-planting on the ground. Then, we programmed the exo-boots to give the participants a blast of assistance with either the same delay as their natural response or artificially faster than humanly possible and compared that to giving no exo-boot assistance at all.

We were surprised to find that only the mode that beats the human reaction to the punch helped users recover balance faster and prevented them from taking a step to recover.

At the same time, we recorded physiological responses of our exo-boot “test pilots” to see whether the device was mimicking – or potentially interfering with – their underlying balance responses. Using ultrasound, we could look under the skin to see how calf muscles stretched during the slip. Muscle stretch generates critical sensory signals needed by the nervous system to initiate a balance reaction.

The faster-than-human exo-boot balance response actually eliminated calf muscle stretch signals, but the control signals to those same muscles, in response to the nervous system generally, persisted. This finding highlights that the nervous system is more than a set of simple reflexes that react to local muscle stretch but instead acts to gather information from throughout the body to remain upright in both standing and walking.

A test subject wearing a robotic lower-limb exoskeleton
In this composite time series image, a test subject wearing a robotic lower-limb exoskeleton pitches forward but doesn’t need to step to maintain her balance. Image: Georgia Institute of Techology/Candler Hobbs

Why it matters

People tend to take balance for granted. But every step holds the possibility of a fall, and bad falls are a top reason for health declines when people grow older. If researchers can develop assistive technology to improve balance while getting from here to there, it can prevent falls and enable people to be active for longer.

What other related research is going on in the field

Using wearable robots to help mobility, particularly balance, has long been a dream of scientists and engineers. But research to date has focused primarily on providing powered assistance to make it easier to walk faster or longer. Aside from a handful of promising laboratory-based research devices, the field of wearable robots has not focused much on balance.

Technology advances in the past decade open up new possibilities for state-of-the-art wearable robots to improve balance. Other researchers around the world are also adapting existing exoskeleton systems to assist balance using biologically inspired control algorithms that may, in time, be able to respond faster than a human’s reflex response.

What’s next

Our study is a proof-of-concept demonstration that exoskeletons can improve balance in a controlled laboratory setting during a simple upright standing task for young adults without balance problems. There is much to be done to enable wearable robots to help with balance in everyday life and improve life for people with balance impairments like older adults, or people with stroke or spinal cord injury. Future studies will be required to explore using exoskeletons at other lower-limb joints, like the knee and hip, to develop artificial intelligence that can anticipate the risk of falling and enable personalized superhuman balance.

Have you read?
Discover

How is the World Economic Forum ensuring the responsible use of technology?

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

This is how stress affects every organ in our bodies

Michelle Meineke

May 22, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum