A new understanding of brain cancer

Bill Hathaway
Associate Director Science and Medicine, Yale
Share:
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Future of Global Health and Healthcare

DNA mutations can cause cancer but in some cases, more mutations may mean a better prognosis for patients. A Yale-led comprehensive genomic analysis of more than 700 brain tumors has revealed one such subtype of the most malignant brain tumor, called glioblastoma, or GBM. This subtype possesses thousands of tumor-specific DNA errors or mutations instead of dozens observed in most glioblastoma cases. It is also associated with longer survival.

The findings, reported in Journal Neuro-Oncology, suggest it may be possible to develop personalized treatments for more aggressive forms of brain cancer, including immunotherapy for these hyper- or ultra-mutated tumors, said Murat Günel, professor and chair of neurosurgery, who leads the Brain Tumor Research Program at Yale and Smilow Cancer Hospital at Yale-New Haven Hospital.

“We have been able to translate various complementary cutting-edge genomic technologies, which were once solely research tools, to our clinical programs to analyze individual cancers,” said Günel, who is also a professor of genetics and a researcher for the Yale Cancer Center. “We can now gain comprehensive understanding of the molecular make-up of a cancer to pinpoint specific vulnerabilities and leverage these weak spots for precision treatments in our Recurrent Brain Tumor Treatment Program.”

While as many as 10,000 mutations were found in the newly described subset of glioblastomas, a more typical tumor contains less than 100. This counterintuitive pattern has also been observed in gynecological and colon cancers: An extraordinary number of mutations means a better chance of survival.

One theory holds that cells with greater number of mutations are able to trigger an aggressive immune system response against cancer cells, while cells with fewer mutations might escape detection, Gunel said.

Although the number of GBMs in this newly identified group is small, the use of standard chemotherapy in some cases has been shown to inadvertently result in a hyper-mutated tumor. Indeed, the drug temozolomide, used as the first line of chemotherapy in GBM, has been shown to sometimes increase mutations.

“But perhaps the naïve immune system is not strong enough to eliminate the cancer cells in these brain tumors,” Gunel noted.

However, if a new generation of immunotherapy drugs called checkpoint inhibitors were used in these hyper-mutated tumors, perhaps more cancer cells might be targeted for destruction, he said. Clinical trials currently underway might be improved by considering the molecular genetic make-up of the individual tumor, he concluded.

This article is published in collaboration with Yale News. Publication does not imply endorsement of views by the World Economic Forum.

To keep up with the Agenda subscribe to our weekly newsletter.

Author: Bill Hathaway writes for Yale News.

 Image: A radiologist examines the brain X-rays of a patient who underwent a cancer prevention medical check-up at the North Bengal Oncology Center, a cancer hospital. REUTERS/Rupak De Chowdhuri 
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum