Fourth Industrial Revolution

Is this the secret to superconductivity?

Lights are seen wrapped around a tree's branches. Image: REUTERS

Natalie Wolchover
Writer, Quanta Magazine
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Fourth Industrial Revolution?
The Big Picture
Explore and monitor how Fourth Industrial Revolution is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Fourth Industrial Revolution

The energy equivalent of several kilograms of TNT surged into the coil, bathing the 0.003-carat crystal in its bore in one of the strongest magnetic fields ever generated.

From the magnet came a small boom like the sound of a foot stomping, said engineer Jérôme Béard — but thankfully, no explosion. His calculations held up.

With that magnetic blast and a subsequent series of identical ones executed last winter, researchers at the National Laboratory for Intense Magnetic Fields (LNCMI) in Toulouse, France, uncovered a key property of the crystal, a matte-black ceramic in a class of materials called cuprates that are the most potent superconductors known. The findings, reported today in the journal Nature, provide a major clue about the inner workings of cuprates, and may help scientists understand how these materials allow electricity to flow freely at relatively high temperatures.

“Technically amazing,” said J.C. Séamus Davis, an experimental physicist with appointments at Cornell University, St. Andrews University in Scotland, and Brookhaven National Laboratory who was not involved in the experiment. “The paper is a masterpiece.”

The experimental team, led by LNCMI staff scientist Cyril Proust and Louis Taillefer of the University of Sherbrooke in Canada, used their 90-tesla magnet — which creates a magnetic field nearly two million times as strong as the one enshrouding Earth — to momentarily strip away superconductivity in their cuprate sample. This revealed details of the underlying phase from which the behavior seems to arise.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

How the Internet of Things (IoT) became a dark web target – and what to do about it

Antoinette Hodes

May 17, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum