What does Brad Pitt's hair have to do with fighting cancer?

Actor Brad Pitt speaks during a panel discussion about rebuilding New Orleans, at the Clinton Global Initiative, in New York, September 24, 2009. About 1,200 participants including heads of state, business leaders, humanitarians and celebrities will attend the fifth annual Clinton Global Initiative (CGI) which started on Tuesday.

Cowlick causing genes could also fight tumour producing protein. Image: REUTERS/Chip East

Layne Cameron
Share:
The Big Picture
Explore and monitor how Innovation is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Innovation

What does Brad Pitt have in common with a fruit fly? They both have cowlicks—a swirl of hair caused by a patterning mechanism.

Now, researchers have discovered the genes that cause cowlicks are regulated by a tumor suppressor protein. On the macro scale, their presence can be seen in feather and fish scale patterns. On the cellular level, they are directly regulated by a cancer protein, the retinoblastoma tumor suppressor protein.

Tumor suppressors, such as retinoblastoma, are guardians of our cells that control cell division, DNA repair and cellular suicide signals—all important tools in fighting cancer. In examining genes that have the retinoblastoma protein associated with them on the chromosomes, researchers discovered that polarity genes in the fruit fly Drosophila are controlled by retinoblastoma protein.

“We know that the retinoblastoma protein controls cell division, policing the activity of oncogenes, genes that can potentially cause cancer, but our study suggests that this protein also may control cell migration, which is thrown out of whack by diseases such as cancer,” says Sandhya Payankaulam, lead author of the study published in Scientific Reports and research assistant professor at Michigan State University, who works in David Arnosti’s and Bill Henry’s biochemistry and molecular biology labs.

Most cells in our body show a polarized organization that is important to carry out specialized functions, such as transporting nutrients across cells of the gut, sticking to each other to provide support and making larger scale patterns seen in hair, such as cowlicks.

Polarity specifies the front and rear end of a cell, which is absolutely essential for proper migration from one place during development. Control of this migration is lost when cancer cells move about the body during metastasis, at which point the disease becomes difficult to treat.

Fruit flies: tiny people with wings

“A great deal of research on cell polarity is directed toward understanding how polarity proteins interact with each other in cells,” Arnosti says. “Until now, people neglected the regulation of polarity genes, thinking them to be regulated in a rather humdrum manner similar to ‘housekeeping’ genes that are devoted to basic cellular functions. Our work challenges this view and raises an important question relevant to development of new cancer diagnosis and therapies.”

Since fruit flies are essentially tiny people with wings, in terms of genetics, these model organisms can play a key role in advancing human medicine. From analysis of data from human cells, the researchers believe that retinoblastoma plays a similar role in humans, possibly contributing to cancer metastasis.

Payankaulam showed that the fruit fly retinoblastoma protein regulates the polarity genes important for this process, and loss of the fly protein induced misoriented wing hairs, generating an unkempt appearance.

The researchers showed that such defects in establishment of polarity also were found in other tissues, indicating that retinoblastoma protein has a general responsibility for polarity regulation.

Researchers from the University of Toronto are coauthors of the study. The National Institutes of Health funded the work.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum