Fourth Industrial Revolution

Listen don't look: Using our ears to uncover the universe's secrets

Comet ISON is seen in this five-minute exposure taken at NASA's Marshall Space Flight Center (MSFC) on November 8 at 5:40 a.m. EST (1040 GMT), courtesy of NASA. The image has a field of view of roughly 1.5 degrees by 1 degree and was captured using a colour charge-coupled device (CCD) camera attached to a 14" (36 cm) telescope located at Marshall. At the time of this picture, Comet ISON was 97 million miles (156 million km) from Earth, heading toward a close encounter with the sun on November 28. Located in the constellation of Virgo, it is now visible in a good pair of binoculars. REUTERS/Aaron Kingery/NASA/MSFC/Handout via REUTERS  (OUTER SPACE - Tags: SCIENCE TECHNOLOGY) ATTENTION EDITORS – THIS IMAGE WAS PROVIDED BY A THIRD PARTY. FOR EDITORIAL USE ONLY. NOT FOR SALE FOR MARKETING OR ADVERTISING CAMPAIGNS. THIS PICTURE IS DISTRIBUTED EXACTLY AS RECEIVED BY REUTERS, AS A SERVICE TO CLIENTS - RTX159N4

In fact, we’ve been using sonification to study certain kinds of information for decades. Image: REUTERS/Aaron Kingery/NASA

Michael Quinton
Pre-Doctoral Researcher, Edinburgh Napier University
David Benyon
Professor of Computing, Edinburgh Napier University
Iain McGregor
Lecturer in Sound Design , Edinburgh Napier University
Our Impact
What's the World Economic Forum doing to accelerate action on Fourth Industrial Revolution?
The Big Picture
Explore and monitor how Fourth Industrial Revolution is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Fourth Industrial Revolution

From rainfall patterns to share price performance, the usual way to analyse any data that shows something changing over a period of time is to put it into a graphic. Making data visual usually makes it much easier to understand the trends – but not always.

When you’re trying to compare various datasets at the same time, for example, the X and Y axes of a graph quickly become limiting. Graphs are also often more useful for considered analysis in front of a computer than when you’re trying to follow something in real time.

A way around these problems is to convert the data into different pitches of sound. Known as sonification, this speeds up analysis by allowing listeners to compare multiple datasets simultaneously. And because the human ear can detect tiny changes in sound across a wide range of frequencies, we can often spot unexpected patterns much more easily by listening to data than looking at it.

In fact, we’ve been using sonification to study certain kinds of information for decades. Since the 1950s seismologists have been using it to analyse earthquake data since it helps them discriminate between earthquakes and atomic explosions. Meanwhile, it is used in rowing to let rowers listen in real time to the smoothness of their stroke and adjust their technique accordingly. This has been successfully used by Australian, German and Swedish Olympic crews, for example.


One area where sonification has not been used but has great potential is the study of exoplanets – planets that orbit stars other than our sun. We are developing a system for this and believe that in the coming decades it could make a huge difference to how well we understand worlds beyond our own.

Space sound

Sonification has been used in space research in the study of solar wind, to establish a much more accurate way of determining the origins of coronal mass ejections, which are major explosions of plasma and magnetic field from the sun. Probably the most memorable recent application in astronomy, however, has been gravitational waves, whose existence was demonstrated through sound. Professor Brian Greene, who led the discovery, said sonification was “the future of studying the cosmos” and the only way of discerning certain aspects of the universe.

Our project initially focused on sonifying our solar system, but is now concerned with applying the technique to exoplanets, including their mass, size, movement, speed of movement, axis tilt, atmospheric conditions and the chemical properties of their atmospheres. Our work suggests that sonifying these sets of data makes it easier and faster to recognise interesting patterns.

So how would this work? Over the next couple of years we will be building a surround-sound environment to enable listeners to “stand” in the centre of a given solar system. By listening to the data from the various orbits of the planets, astronomers will be able to determine the speeds at which exoplanets are travelling and the gravitational effects when exoplanets align, among other things.

They will be able to hear variances due to natural distortion that occurs when two sounds interact in the same space – as you can hear below from a clip of sonification work we did on the four inner planets in our solar system.


By integrating the sound data from the parent star, astronomers will be able to hear differences between a dip or gain in solar output. This would make it easier to determine whether it was caused by a solar flare or by a planet passing.

It might also be possible to find evidence of undiscovered planets in a solar system by hearing their gravitational influence through unexpected sounds in the orbits or atmospheric data of other planets in a system. Astronomers would then be able to point a telescope in the right direction to try to find the source.

Exo in unison

Sonification could also be used to compare various solar systems by multi-layering their datasets. Once astronomers “listened” to a number of systems in unison, they would get used to a particular sonic signature for each one from the sum of the sounds of the solar activity and planets within the system. Anomalies and differences would help draw attention to trends.

Astronomers would also be able to save time by going through large amounts of data simultaneously. We are seeing a sharp increase in the discovery of exoplanets, which means there are more and more sets of data to handle. This year alone, about 1,000 new planets have been added to the database – and the rate of discovery is likely to rise further in the near future as detection techniques keep improving.

In short, sonification has huge potential in deepening our understanding of exoplanets across the universe. In years to come it should become an additional tool for revealing the secrets beyond our solar system. We like to say that seeing is believing, but hearing could be the key to truly understanding our universe.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Space: The $1.8 Trillion Opportunity for Global Economic Growth

Bart Valkhof and Omar Adi

February 16, 2024

About Us



Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum