Nature and Biodiversity

How forest loss has changed biodiversity across the globe over the last 150 years

Forest

A study looks at the effects of biodiversity over the last 150 years. Image: Unslash/Luca Bravo

Maria Dornelas
Reader in Biology, University of St Andrews
Gergana Daskalova
PhD Candidate in Global Change Ecology, University of Edinburgh
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Nature and Biodiversity?
The Big Picture
Explore and monitor how Nature and Biodiversity is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Nature and Biodiversity

  • A study has looked at forest loss over 150 years compared with numbers of animal and plant species, to monitor the effect of deforestation on biodiversity.
  • The results were surprising - deforestation doesn't directly correlate to a loss of biodiversity.
  • In fact, where biodiversity can fall in one area, it can flourish in another.

The Earth’s forests have been changing ever since the first tree took root. For 360 million years, trees have grown and been felled through a dynamic mix of hurricanes, fires and natural regeneration. But with the dawn of the 17th century, humans began replacing large swathes of forest with farms and cities.

The global pace of deforestation has slowed in the 21st century, but forests are still disappearing – albeit at different rates in different parts of the world. Boreal forests, which grow in the far north of the world and across vast areas of Canada and Russia, are expanding further north as the climate warms, turning tundra into new woodland. Many temperate forests, like those in Europe, saw their greatest destruction centuries ago. But in the tropics, forest loss is accelerating in previously pristine wilderness.

Have you read?

As forest cover has fluctuated over time, the biodiversity within forests has changed too. Forests support around 80% of all species living on land, but the species we see on our woodland walks today are likely to be different from those people saw in the past. Many species, such as the Alpine longhorn beetle, survive in intact old-growth forests, while species like the red fox have managed to thrive in areas with higher human impact.

We wanted to know how changes in biodiversity worldwide are linked to changes in the world’s forests, but this was always difficult, as the effects of forest loss vary from one place to the next. How biodiversity shifts over time following forest loss hadn’t been explored across the globe – until now.

The Alpine longhorn beetle persists in old-growth forests across continental Europe.
The Alpine longhorn beetle. Image: Gergana Daskalova

Diverse responses

In our new paper, we matched estimates of forest loss throughout history with records of the numbers and types of plants and animals monitored each year by scientists around the world.

Harnessing over five million records across 150 years at over 6,000 locations, we were surprised to find that forest loss didn’t always lead to declines in biodiversity. Instead, when forest cover declined, changes in biodiversity intensified, with increases in the abundance of some species and decreases in others. The composition of forest life – the different types of species present – was altered too. The rate at which these changes happened in each location accelerated as forest cover shrank.

Researchers concluded that deforestation doesn’t cause uniform declines in biodiversity.
Results were contradictory to what was previously thought. Image: Gergana Daskalova

The effects of forest loss were not uniform in all places. The loss of the same sized patch of forest led to biodiversity declines in one area and increases in another. Knowing the history of a particular place was important for understanding this variation. Whether or not forest loss of that magnitude had occurred at that location in the past usually determined what happened in the present. Once pristine forests saw biodiversity declines and historically disturbed forests often experienced no change or even saw increases in biodiversity.

Coronavirus Covid-19 virus infection China Hubei Wuhan contagion spread economics dow jones S&P 500 stock market crash 1929 depression great recession
The effects of forest loss are not uniform in all places. Image: Science Magazine

When forests were lost in previously pristine wilderness, we found declines in the abundance of animals like swift parrots in Australia, tigers in Russia and capercaillies (a type of grouse) in Spain. These species only tend to thrive in ancient and lightly disturbed forest habitats.

The species that we discovered increasing in abundance after forest loss included white storks, Eurasian skylarks, red deer and red foxes – species which have evolved alongside disturbance and are more adaptable.

Loading...

Delayed effects

Changes in biodiversity didn’t always immediately follow forest loss. We discovered that the pace at which forest loss altered biodiversity differed among short-lived species, such as light-loving plants like St John’s wort, and longer-lived species like red-tailed hawk. The longer the lifespan of a species, the longer it took for the effects of forest loss to register.

Sometimes the effects carried across generations. Red-tailed hawks may manage to raise their young alongside deforestation, but these offspring may struggle to prosper in the shrinking habitat, and ultimately fail to produce young of their own. If resources are scarce, species with longer lifetimes could persist but not reproduce for decades. That’s how the impact of forest loss on such species might only appear decades after the first wave of deforestation.

The pace at which biodiversity responds to forest loss can vary from a couple of years to several decades.
The affect of deforestaion on biodiversity can be rapid, or take up to a few decades. Image: Gergana Daskalova

These delayed effects highlight how important it is to monitor plants and animals over decades. A single snapshot in time cannot detect the full extent of human impacts on biodiversity. With a longer perspective, we are better equipped to conserve Earth’s biodiversity not just now, but for decades to come.

By combining datasets from around the world, we can understand the state of the world’s forests and of the millions of plants and animals they support. Changes in the biodiversity matter because they directly affect the benefits that forests provide for people, such as clean air and a brake on climate change. With a better understanding of how forest loss influences biodiversity, we can improve future conservation and restoration efforts around the planet.

Loading...
Loading...
Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Nature and BiodiversityClimate Action
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

G7 agrees to phase out use of unabated coal power plants, and other nature and climate stories you need to read this week

Meg Jones

May 6, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum