Agriculture, Food and Beverage

This new soil can water plants all by itself

farming agriculture crops dry desert plants soil growth water change science research innovation climate change inhospitable biology biotechnology

The innovation could help increase farming potential in dry, deserted areas. Image: REUTERS/Amit Dave

Nat Levy
Lead Writer, University of Texas' Cockrell School of Engineering
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Agriculture, Food and Beverage?
The Big Picture
Explore and monitor how Agriculture, Food and Beverage is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Agriculture, Food and Beverage

  • A team of researchers have developed a new type of soil that can pull water from the air.
  • It works by using super-moisture-absorbent gels to capture the water from the air, which it distributes to the plants.
  • The self-watering soil could potentially expand the map of farmable land around the globe, helping to tackle food insecurity.

A new type of soil can pull water from the air and distribute it to plants, researchers report.

The self-watering soil could potentially expand the map of farmable land around the globe to previously inhospitable places and reduce water use in agriculture at a time of growing droughts.

As reported in ACS Materials Letters, the team’s atmospheric water irrigation system uses super-moisture-absorbent gels to capture water from the air. When the soil is heated to a certain temperature, the gels release the water, making it available to plants. When the soil distributes water, some of it goes back into the air, increasing humidity and making it easier to continue the harvesting cycle.

Have you read?

“Enabling free-standing agriculture in areas where it’s hard to build up irrigation and power systems is crucial to liberating crop farming from the complex water supply chain as resources become increasingly scarce,” says Guihua Yu, associate professor of materials science in the Walker department of mechanical engineering at the University of Texas at Austin.

Each gram of soil can extract approximately 3-4 grams of water. Depending on the crops, approximately 0.1 to 1 kilogram (0.22 to 2.2 lbs.) of the soil can provide enough water to irrigate about a square meter (10.76 square feet) of farmland.

The gels in the soil pull water out of the air during cooler, more humid periods at night. Solar heat during the day activates the water-containing gels to release their contents into soil.

Agriculture, Food and Beverage Technological Transformation Biotechnology
Each gram of soil can extract approximately 3-4 grams of water. Image: UT Austin

The team ran experiments on the roof of the Cockrell School’s Engineering Teaching Center building at UT Austin to test the self-watering soil. They found that the hydrogel soil was able to retain water better than sandy soils found in dry areas, and it needed far less water to grow plants.

During a four-week experiment, the team found that its soil retained approximately 40% of the water quantity it started with. In contrast, the sandy soil had only 20% of its water left after just one week.

In another experiment, the team planted radishes in both types of soil. The radishes in the hydrogel soil all survived a 14-day period without any irrigation beyond an initial round to make sure the plants took hold. Radishes in the sandy soil were irrigated several times during the first four days of the experiment. None of the radishes in the sandy soil survived more than two days after the initial irrigation period.

“Most soil is good enough to support the growth of plants,” says Fei Zhao, a postdoctoral researcher in Yu’s research group who led the study with Xingyi Zhou and Panpan Zhang. “It’s the water that is the main limitation, so that is why we wanted to develop a soil that can harvest water from the ambient air.”

The water-harvesting soil is the first big application of technology that Yu’s group has been working on for more than two years. Last year, the team developed the capability to use gel-polymer hybrid materials that work like “super sponges,” extracting large amounts of water from the ambient air, cleaning it, and quickly releasing it using solar energy.

The researchers envision several other applications of the technology. It could potentially be used for cooling solar panels and data centers. It could also expand access to drinking water, either through individual systems for households or larger systems for big groups such as workers or soldiers.

Source: UT Austin

Loading...
Loading...
Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Brazil's smallholder farmers can benefit from digital traceability — here's how 

Clara Clemente Langevin and Erica Dias

February 29, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum