• In 2019, billions of tonnes of metal were mined.
  • Some of the most essential metals make up this large number, including iron, aluminium and copper.
  • The world's population is growing, therefore, the need for materials will also grow.

Metals are all around us, from our phones and cars to our homes and office buildings.

While we often overlook the presence of these raw materials, they are an essential part of the modern economy. But obtaining these materials can be a complex process that involves mining, refining, and then converting them into usable forms.

So, how much metal gets mined in a year?

Metals vs ores

Before digging into the numbers, it’s important that we distinguish between ores and metals.

Ores are naturally occurring rocks that contain metals and metal compounds. Metals are the valuable parts of ores that can be extracted by separating and removing the waste rock. As a result, ore production is typically much higher than the actual metal content of the ore. For example, miners produced 347 million tonnes of bauxite ore in 2019, but the actual aluminum metal content extracted from that was only 62.9 million tonnes.

Here are all the metals and metal ores mined in 2019, according to the British Geological Survey:

a chart showing mined metals
Iron ore is mined more than any other metal.
Image: Visual Capitalist

Miners produced roughly three billion tonnes of iron ore in 2019, representing close to 94% of all mined metals. The primary use of all this iron is to make steel. In fact, 98% of iron ore goes into steelmaking, with the rest fulfilling various other applications.

Industrial and technology metals made up the other 6% of all mined metals in 2019. How do they break down?

Industrial Metals

From construction and agriculture to manufacturing and transportation, virtually every industry harnesses the properties of metals in different ways.

Here are the industrial metals we mined in 2019.

a chart showing industrial mined metals
Virtually every industry harnesses the properties of metals in different ways.
Image: Visual Capitalist
a chart showing industrial mined metals
Beryllium makes up just 0.0001% of the mined industrial metals.
Image: Visual Capitalist

It’s no surprise that aluminum is the most-produced industrial metal. The lightweight metal is one of the most commonly used materials in the world, with uses ranging from making foils and beer kegs to buildings and aircraft parts.

Manganese and chromium rank second and third respectively in terms of metal mined, and are important ingredients in steelmaking. Manganese helps convert iron ore into steel, and chromium hardens and toughens steel. Furthermore, manganese is a critical ingredient of lithium-manganese-cobalt-oxide (NMC) batteries for electric vehicles.

Although copper production is around one-third that of aluminum, copper has a key role in making modern life possible. The red metal is found in virtually every wire, motor, and electrical appliance in our homes and offices. It’s also critical for various renewable energy technologies and electric vehicles.

Technology and precious metals

Technology is only as good as the materials that make it.

Technology metals can be classified as relatively rare metals commonly used in technology and devices. While miners produce some tech and precious metals in large quantities, others are relatively scarce.

a chart showing rare metal usage
Rare metals commonly used in technology and devices.
Image: Visual Capitalist
a chart showing mined metals
Despite being so well known, gold makes up just 0.3% of the rare metals mined.
Image: Visual Capitalist
Saving the planet

What is the World Economic Forum doing around the issue of deep-sea mining?

Minerals critical to the clean energy transition have been found in the deep ocean floor. These include cobalt, lithium, copper, nickel, manganese and zinc that are used in batteries for electric vehicle and portable electronics, electronic appliances, energy generation and many other aspects of our daily lives.

Deep-sea mining could offer lower financial cost and a lighter carbon footprint than conventional terrestrial sources of these minerals; it also has the potential to significantly harm one of the last natural wildernesses on our plant. In this relatively young sector, scientific knowledge is still being built on the potential impact of the industry, and the effectiveness of the proposed management methods. As the date for decisions on permitting deep-sea mining contracts gets closer, a fierce debate is emerging on if and how mining should take place. The need for a platform to host a balanced exchange on the issue has become evident.

The World Economic Forum’s Platform for Shaping the Future of Global Public Goods has the Deep-Sea Mining Dialogue, an impartial platform that allows different stakeholders to share their knowledge and perspective on the topic and participate in an evidence-based discourse. The Dialogue invites companies in the metal value chain, manufacturers that use metals, environmental groups, institutes and scientists across different disciplines to come together in a constructive, collaborative and open exchange.

The Dialogue helps inform downstream businesses that use metals in their products about the implications of this potential new source of minerals. The World Economic Forum will be gathering available data and analysis and highlighting critical gaps of existing knowledge to establish a fact-base. Through establishing a framework on responsible metal sourcing, the Dialogue reframes the heated debate on deep-sea mining as a collaborative exploration for a shared vision for the future. The aim is to reach an informed and consensual agreement on the most responsible path forward.

Tin was the most-mined tech metal in 2019, and according to the International Tin Association, nearly half of it went into soldering.

It’s also interesting to see the prevalence of battery and energy metals. Lithium, cobalt, vanadium, and molybdenum are all critical for various energy technologies, including lithium-ion batteries, wind farms, and energy storage technologies. Additionally, miners also extracted 220,000 tonnes of rare earth elements, of which 60% came from China.

Given their rarity, it’s not surprising that gold, silver, and platinum group metals (PGMs) were the least-mined materials in this category. Collectively, these metals represent just 2.3% of the tech and precious metals mined in 2019.

A material world

Although humans mine and use massive quantities of metals every year, it’s important to put these figures into perspective.

According to Circle Economy, the world consumes 100.6 billion tonnes of materials annually. Of this total, 3.2 billion tonnes of metals produced in 2019 would account for just 3% of our overall material consumption. In fact, the world’s annual production of cement alone is around 4.1 billion tonnes, dwarfing total metal production.

The world’s appetite for materials is growing with its population. As resource-intensive megatrends such as urbanization and electrification pick up the pace, our material pie will only get larger.