Health and Healthcare Systems

A worm's toxic waste may help us understand Alzheimers. This is how

Plaster phrenological models of heads, showing different parts of the brain, are seen at an exhibition at the Wellcome Collection in London March 27, 2012.  We've pickled it, dessicated it, drilled it, mummified it, chopped it and sliced it over centuries, yet as the most complex entity in the known universe, the human brain remains a mysterious fascination. With samples of Albert Einstein's preserved brain on slides, and specimens from other famous and infamous heads such as the English mathematician Charles Babbage and notorious mass murderer William Burke, an exhibition opening in London this week is seeking to tap into that intrigue. The exhibition Brains: The Mind As Matter runs from March 29 to June 17. REUTERS/Chris Helgren       (BRITAIN - Tags: SCIENCE TECHNOLOGY SOCIETY HEALTH) - RTR2ZYK1

A new study with worms may help explain how diseases like Alzheimer’s and Parkinson’s spread in the brain. Image: REUTERS/Chris Helgren

Robin Lally
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Health and Healthcare Systems?
The Big Picture
Explore and monitor how Biotechnology is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Biotechnology

A new study with worms may help explain how diseases like Alzheimer’s and Parkinson’s spread in the brain. Sometimes when neurons dispose of toxic waste, neighboring cells get sick.

“Normally the process of throwing out this trash would be a good thing,” says Monica Driscoll, professor of molecular biology and biochemistry at Rutgers University. “But we think with neurodegenerative diseases like Alzheimer’s and Parkinson’s there might be a mismanagement of this very important process that is supposed to protect neurons but, instead, is doing harm to neighbor cells.”

Scientists have understood how the process of eliminating toxic cellular substances works internally within the cell, comparing it to a garbage disposal getting rid of waste, but they did not know how cells released the garbage externally.

“What we found out could be compared to a person collecting trash and putting it outside for garbage day,” says Driscoll. “They actively select and sort the trash from the good stuff, but if it’s not picked up, the garbage can cause real problems.”

Working with the transparent roundworm C. elegans, researchers discovered that the worms–which have a lifespan of about three weeks—had an external garbage removal mechanism and were disposing these toxic proteins outside the cell as well.

Lead author Ilija Melentijevic, a graduate student in Driscoll’s lab, realized what was occurring when he observed a small cloud-like, bright blob forming outside of the cell in some of the worms. Over two years, he counted and monitored their production and degradation in single still images until finally he caught one in mid-formation.

“They were very dynamic,” says Melentijevic, an undergraduate student at the time who spent three nights in the lab taking photos of the process viewed through a microscope every 15 minutes. “You couldn’t see them often, and when they did occur, they were gone the next day.”

Research using roundworms has provided scientists with important information on aging, which would be difficult to conduct in people and other organisms that have long life spans.

The roundworms engineered to produce human disease proteins associated with Huntington’s disease and Alzheimer’s threw out more trash consisting of these neurodegenerative toxic materials. While neighboring cells degraded some of the material, more distant cells scavenged other portions of the diseased proteins.

“These findings are significant,” Driscoll says. “The work in the little worm may open the door to much needed new approaches to addressing neurodegeneration and diseases like Alzheimer’s and Parkinson’s.”

The study is published in the journal Nature.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Funding the future: Sustainable financing models to help the fight against antimicrobial resistance

Shyam Bishen

October 10, 2024

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum