Climate Action

Fossil fuel drilling could be contributing to climate change by heating Earth from within

An energy installation on a property leased to Devon Energy Production Company by the Catholic Archdiocese of Oklahoma City is seen near Guthrie, Oklahoma September 15, 2015. Casting the fight against climate change as an urgent moral duty, Pope Francis in June urged the world to phase out highly-polluting fossil fuels. Yet in the heart of U.S. oil country several dioceses and other Catholic institutions are leasing out drilling rights to oil and gas companies to bolster their finances, Reuters has found. And in one archdiocese -- Oklahoma City -- Church officials have signed three new oil and gas leases since Francis's missive on the environment, leasing documents show. Picture taken September 15, 2015. To match Exclusive POPE-USA/DRILLING  REUTERS/Nick Oxford - GF10000215447

If a similar heat-trapping shield exists in the Earth’s crust, much must be done to reinforce it. Image: REUTERS/Nick Oxford

Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Climate Action?
The Big Picture
Explore and monitor how Climate Crisis is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Climate Crisis

Almost all scientists agree that burning fossil fuels is contributing to climate change. But agreement is less clear cut on how exactly it’s influencing rising global temperatures.

The world is now 1°C warmer than it was in pre-industrial times. Is this solely down to emissions of greenhouse gasses such as CO₂? Meteorologist Hubert Lamb, regarded as the father of modern climatology, argued that CO₂ levels alone couldn’t account for all of the global warming that’s been observed.

His attention turned instead to the role of thermal emissions. Burning fossil fuels doesn’t just produce greenhouse gases, it also generates a lot of heat, which leaks out to the atmosphere. Nuclear tests and volcanic eruptions are some examples of other large heat sources.

Back in 2009, two scientists in Sweden argued that thermal emissions were more important than CO₂ for raising global temperatures. A few years later, two Chinese scientists suggested that heat from the earth’s interior could be contributing to rising temperatures. They argued that fossil fuels such as coal, oil and gas in layers and crevices beneath the Earth’s surface act as an insulating blanket, trapping heat from the planet’s interior. As these deposits have been emptied by fossil fuel extraction, more of that heat could be reaching the surface.

This idea is similar to how fat tissue under the skin prevents body heat from being lost to the surrounding air. To investigate this theory in the Earth’s crust, we looked at the figures for global fossil fuel production alongside data for temperature changes on the land and sea surface. Our research suggests that it is possible that temperatures may be rising faster in places where fossil fuels are being extracted from the ground.

Rising Heat

Between 2007 and 2017, 45.5 billion tonnes of oil and 36.3 billion cubic metres of natural gas were removed from the Earth’s crust. When oil and gas is extracted, the voids fill with water, which is a less effective insulator. This means more heat from the Earth’s interior can be conducted to the surface, causing the land and the ocean to warm.

We looked at warming trends in oil and gas producing regions across the world. These places, which included Saudi Arabia, the Arabian Gulf, Gulf of Mexico, the North Sea and Alaska, reported high rates of warming – between three and six times higher than the average rate worldwide.

One of the fastest rates of warming has been observed in the Arctic, where temperatures have risen by 0.6°C every decade since 1978. In Antarctica, however, the increase is just 0.1°C, despite similar levels of atmospheric CO₂ in both polar regions.

One reason for the difference may be that fossil fuels are extracted in the Arctic, but not in the Antarctic. From 2007, more than 400 oil and gas fields have been developed north of the Arctic circle, while in Antarctica, fossil fuel extraction is banned.

An earlier study found evidence for a similar pattern in the north east of England, where a long history of coal mining has dramatically changed the land’s subsurface. So much so that in the former coalfields around Gateshead and Newcastle, a “heat island” effect was detected below and beneath the ground. This meant the atmosphere above the conurbation was about 2°C warmer than the surrounding area, while the ground beneath Gateshead was found to be up to 4.5°C warmer.

Groundwater that discharged from a mine water pumping station was also found to be unusually warm, in part due to heating from the Earth’s interior. The researchers concluded that this effect could be expected in former coalfields across Britain.

Have you read?

    Could higher rates of warming in these places be caused by the Earth losing its internal “heat shield”? The idea that some regions have a protective layer below the ground, stopping heat from the Earth’s interior rising to the surface, isn’t as strange as it may sound. After all, the ozone layer in Earth’s atmosphere protects against ultraviolet radiation, but it was only discovered in the 19th century. Astounding new findings about the Earth system emerge all the time.

    If a similar heat-trapping shield exists in the Earth’s crust, much must be done to reinforce it. Carbon emissions that are captured from industry and energy generation could be stored in the crevices left by extracted fossil fuels, re-insulating the sub-surface and helping to slow the thermal emissions that could be amplifying global warming.

    Scientists have said for some time that any hope of halting catastrophic climate change rests on leaving fossil fuels in the ground. Our preliminary findings could give that warning new urgency. Underground reserves of oil have existed for far longer than humans have exploited them – we know worryingly little about the consequences of emptying them.

    Don't miss any update on this topic

    Create a free account and access your personalized content collection with our latest publications and analyses.

    Sign up for free

    License and Republishing

    World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

    The views expressed in this article are those of the author alone and not the World Economic Forum.

    Related topics:
    Climate ActionNature and BiodiversityEnergy Transition
    Share:
    World Economic Forum logo
    Global Agenda

    The Agenda Weekly

    A weekly update of the most important issues driving the global agenda

    Subscribe today

    You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

    More on Climate Action
    See all

    Here are 5 lessons on how to prioritise clean air in businesses

    Vaishali Nigam Sinha and Nadine Sterley

    September 17, 2024

    1:41

    About Us

    Events

    Media

    Partners & Members

    • Sign in
    • Join Us

    Language editions

    Privacy Policy & Terms of Service

    Sitemap

    © 2024 World Economic Forum