In the future, the pictures we take could move. Here’s how
A new deep learning method can animate moving material, such as waterfalls. Image: Unsplash/Robert Lukeman
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:
Technological Transformation
- A new deep learning method can animate moving material, such as waterfalls, smoke, or clouds, from a single photo.
- The technique predicts how things were moving when a photo was taken, and then uses that information to create the animation.
- The method also doesn’t require any user input or extra information.
- In future, it could be used to animate people's hair blowing in the wind.
Sometimes photos can’t truly capture a scene. How much more epic would that vacation photo of Niagara Falls be if the water were moving?
A new deep learning method can do just that: Given a single photo of a waterfall, the system creates a video showing that water cascading down. All that’s missing is the roar of the water and the feeling of the spray on your face.
The technique produces a short video that loops seamlessly, giving the impression of endless movement. The researchers will present this approach at the Conference on Computer Vision and Pattern Recognition.
“A picture captures a moment frozen in time. But a lot of information is lost in a static image. What led to this moment, and how are things changing? Think about the last time you found yourself fixated on something really interesting—chances are, it wasn’t totally static,” says lead author Aleksander Hołyński, a doctoral student in the Paul G. Allen School of Computer Science & Engineering at the University of Washington.
“What’s special about our method is that it doesn’t require any user input or extra information,” Hołyński says. “All you need is a picture. And it produces as output a high-resolution, seamlessly looping video that quite often looks like a real video.”
Take a photo, make a video
Developing a method that turns a single photo into a believable video has been a challenge for the field. “It effectively requires you to predict the future,” Hołyński says. “And in the real world, there are nearly infinite possibilities of what might happen next.”
The team’s system consists of two parts: First, it predicts how things were moving when a photo was taken, and then uses that information to create the animation.
To estimate motion, the team trained a neural network with thousands of videos of waterfalls, rivers, oceans, and other material with fluid motion. The training process consisted of asking the network to guess the motion of a video when only given the first frame. After comparing its prediction with the actual video, the network learned to identify clues—ripples in a stream, for example—to help it predict what happened next. Then the team’s system uses that information to determine if and how each pixel should move.
The researchers tried to use a technique called “splatting” to animate the photo. This method moves each pixel according to its predicted motion. But this created a problem.
“Think about a flowing waterfall,” Hołyński says. “If you just move the pixels down the waterfall, after a few frames of the video, you’ll have no pixels at the top!”
So the team created “symmetric splatting.” Essentially, the method predicts both the future and the past for an image and then combines them into one animation.
“Looking back at the waterfall example, if we move into the past, the pixels will move up the waterfall. So we will start to see a hole near the bottom,” Hołyński says. “We integrate information from both of these animations so there are never any glaringly large holes in our warped images.”
Finally, the researchers wanted their animation to loop seamlessly to create a look of continuous movement. The animation network follows a few tricks to keep things clean, including transitioning different parts of the frame at different times and deciding how quickly or slowly to blend each pixel depending on its surroundings.
Hair blowing in the wind
The team’s method works best for objects with predictable fluid motion. Currently, the technology struggles to predict how reflections should move or how water distorts the appearance of objects beneath it.
“When we see a waterfall, we know how the water should behave. The same is true for fire or smoke. These types of motions obey the same set of physical laws, and there are usually cues in the image that tell us how things should be moving,” Hołyński says.
“We’d love to extend our work to operate on a wider range of objects, like animating a person’s hair blowing in the wind. I’m hoping that eventually the pictures that we share with our friends and family won’t be static images. Instead, they’ll all be dynamic animations like the ones our method produces.”
The University of Washington Reality Lab, Facebook, Google, Futurewei, and Amazon funded the work.
Don't miss any update on this topic
Create a free account and access your personalized content collection with our latest publications and analyses.
License and Republishing
World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.
The views expressed in this article are those of the author alone and not the World Economic Forum.
Related topics:
The Agenda Weekly
A weekly update of the most important issues driving the global agenda
You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.
More on Fourth Industrial RevolutionSee all
Matthias Rebellius
August 23, 2024
Emma Charlton
August 22, 2024
Philipp Carlsson-Szlezak and Paul Swartz
August 15, 2024
Pamposh Raina
August 6, 2024
Fariz Jafarov
July 31, 2024