• Access to and uptake of COVID-19 vaccines has been heterogeneous and uneven, with more advanced economies having a larger share of vaccinations.
  • Vaccines appear to retain efficacy against the highly infectious Delta variant but have a lower marginal impact compared to other strains.
  • However, the mutation of the virus suggests that no country is safe, write experts.
  • Results suggest that new COVID-19 cases in neighboring countries contribute to an increase in a country’s own infections.

Vaccination is understood to be the way out of the COVID-19 pandemic and the economic crisis it engendered (Gopinath 2020). However, access to and uptake of COVID-19 vaccines, especially in the early phase, has been heterogeneous and uneven. Countries in North America and Europe started vaccinations earlier and are further along than regions such as Africa and the Middle East. Across income groups, advanced economies have vaccinated a much larger share of their populations than emerging and developing economies, on average.

Our empirical analysis (Deb et al. 2021a) uses cross-sectional variation in vaccination rates (as of July 2021) to ascertain which demand and supply factors explain these cross-country differences in vaccine rollouts. Our results suggest that the severity of the COVID-19 waves in 2020 was the leading driver (Figure 1): countries more affected in terms of cases (for example, the US) had higher vaccination rates in the first half of 2021, potentially reflecting greater urgency to vaccinate. A population’s willingness to receive the vaccine also made a difference (Figueiredo et. al. 2020, Dewatripont 2021).

Supply-side factors such as early procurement played a critical role in explaining the pace of rollouts. The difference in procured vaccines (confirmed and potential deals) in January 2021 between countries which acted early (e.g. Israel) and those where negotiations were protracted (e.g. Germany) is associated with a four percentage-point difference in vaccination rates. Domestic production of vaccines also matters and is associated with higher and faster vaccination rates. This reflects the ability of producing countries like China to secure a larger vaccine supply and administer them more quickly. Finally, health infrastructure – hospitals, medical facilities, and doctors per capita – also contributed.

Figure 1 Determinants of vaccine rollouts

Factors affecting vaccine rollouts (impact of one standard deviation change in factor on vaccinations per 100 population)

Determinants of vaccine rollouts.
Impact of one standard deviation change in factor on vaccinations per 100 population.
Image: Deb et al. 2021

Vaccinations to end the health crisis

Our analysis quantifies the effects of vaccines per capita on health outcomes using real-time data for a large sample of countries. Daily data on the number of new COVID-19 infections, fatalities, and intensive care unit (ICU) admissions are used along with data on containment policies, state of the pandemic, and the dominant variant of the virus.

The results suggest that COVID-19 vaccines have been effective in reducing infections, fatalities, and ICU admissions, consistent with epidemiological studies (Dagan et. al. 2021, Hall et. al. 2021 among others). A ten percentage-point increase in the administration of the first vaccine dose per capita (similar to the rollout in Singapore between February and early March 2021) is associated with a reduction in daily new cases by –0.01 percentage points of the population (about half a standard deviation) after 21 days, and a decline in the reproduction rate (the number of secondary cases that would be generated by an index patient) by –0.14 percentage points (Figure 2). In addition, vaccination reduces the number of COVID-19-related ICU patients and fatalities, helping to ease strains on health infrastructure.

The health effects of vaccines increase after their administration, in line with the epidemiological literature, and the second dose contributes to further flattening the pandemic curve by reducing the virus reproduction rate. There is also evidence that the effectiveness of vaccines varies depending on the dominant COVID-19 variant: vaccines appear to retain efficacy against the highly infectious Delta variant but have a lower marginal impact compared to other strains.

Vaccines, Health and healthcare, Gavi

What is the World Economic Forum doing about access to vaccines?

In 2000, Gavi, the Vaccine Alliance was launched at the World Economic Forum's Annual Meeting in Davos, with an initial pledge of $750 million from the Bill and Melinda Gates Foundation.

The aim of Gavi is to make vaccines more accessible and affordable for all - wherever people live in the world.

Along with saving an estimated 10 million lives worldwide in less than 20 years,through the vaccination of nearly 700 million children, - Gavi has most recently ensured a life-saving vaccine for Ebola.

At Davos 2016, we announced Gavi's partnership with Merck to make the life-saving Ebola vaccine a reality.

The Ebola vaccine is the result of years of energy and commitment from Merck; the generosity of Canada’s federal government; leadership by WHO; strong support to test the vaccine from both NGOs such as MSF and the countries affected by the West Africa outbreak; and the rapid response and dedication of the DRC Minister of Health. Without these efforts, it is unlikely this vaccine would be available for several years, if at all.

Read more about the Vaccine Alliance, and how you can contribute to the improvement of access to vaccines globally - in our Impact Story.

Figure 2 Effect of COVID-19 vaccines on health outcomes

(percent of the population, share of COVID-19 cases)

Effect of COVID-19 vaccines on health outcomes
‘Delta Variant’ is the impact of vaccines on new cases when the Delta variant is dominant.
Image: Deb at al. 2021

Vaccine spillovers

The mutation of the virus into more transmissible strains suggests that no country is safe, even those achieving high vaccination outcomes. Indeed, the rapid spread of the Delta variant from India to neighbouring countries highlights the cross-border risks from protracted waves – for instance, the Delta variant became the dominant coronavirus in ASEAN countries and in North America over a one- to three-month period after becoming the dominant variant in India (Figure 3, top panel).

To shed light on spillovers, our empirical analysis constructs daily proxies of ‘foreign’ COVID-19 cases and vaccines in neighbouring countries, based on geographic proximity and trade linkages. The results suggest that new COVID-19 cases in neighbouring countries contribute to an increase in a country’s own infections (Figure 3, bottom panel), as movement across borders increases transmission. On the other side of the coin, there are favourable spillovers from increased vaccinations in neighbouring countries. These spillovers provide compelling evidence for international cooperation to ramp up vaccine production and ensure adequate distribution to all countries, including by sharing excess doses (Lamy 2020).

Figure 3 Spillovers from COVID-19 outbreaks

a) Days elapsed until Delta variant reached 50% of COVID-19 cases (number of days)

Spillovers from COVID-19 outbreaks.
Days elapsed until Delta variant reached 50% of COVID-19 cases.
Image: GISAID, CoVariants.org

b) Effect of neighbouring COVID-19 cases and vaccines on a country’s health outcomes (percent of population)

Spillovers from COVID-19 outbreaks.
Effect of neighbouring COVID-19 cases and vaccines on a country’s health outcomes.
Image: Deb et al. 2021