Circular Economy

Here's how the circular economy can help solve planetary overshoot

The circular economy aims to conserve resources and reduce waste by keeping products and materials in use for as long as possible.

The circular economy aims to conserve resources and reduce waste by keeping products and materials in use for as long as possible. Image: Pexels/sergio souza

Sean Mowbray
Share:
Our Impact
The Big Picture
Explore and monitor how Circular Economy is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Circular Economy

The circular economy can take many forms, involving the redesign of products and supply chains, reducing primary material consumption and more. At its core, it revolves around the “three R’s”: reduce, reuse, recycle. But these can also be expanded to include “refuse,” “repair,” “refurbish,” “remanufacture,” and “repurpose,“; processes intended to increase sustainability at many levels.
The circular economy can take many forms, involving the redesign of products and supply chains, reducing primary material consumption and more. At its core, it revolves around the “three R’s”: reduce, reuse, recycle. But these can also be expanded to include “refuse,” “repair,” “refurbish,” “remanufacture,” and “repurpose,“; processes intended to increase sustainability at many levels. Image: Aris Sanjaya/CIFOR-ICRAF via Flickr

Discover

What is the World Economic Forum doing about the circular economy?

Fundamentally, “We know what has to change in order to reverse the overshoot of the ecological ceiling,” says Circle Economy’s Álvaro Conde. “Reducing the material footprint of the global economy is a key lever for bringing societies worldwide within [safe] planetary boundaries.” Current textile production and practices — overuse of water and pesticides to grow cotton in semiarid areas, the use of toxic dyes and other chemicals in processing, and the waste inherent in fast fashion practices, for example — contribute to extensive environmental harm. Circular solutions could help reduce these impacts across the whole supply chain.
Fundamentally, “We know what has to change in order to reverse the overshoot of the ecological ceiling,” says Circle Economy’s Álvaro Conde. “Reducing the material footprint of the global economy is a key lever for bringing societies worldwide within [safe] planetary boundaries.” Current textile production and practices — overuse of water and pesticides to grow cotton in semiarid areas, the use of toxic dyes and other chemicals in processing, and the waste inherent in fast fashion practices, for example — contribute to extensive environmental harm. Circular solutions could help reduce these impacts across the whole supply chain. Image: Dave Gingrich via Flickr
Plastic is a major contributor to pollution on land sea and even in the atmosphere, impacting ecosystems to an as yet uncertain degree. Some experts argue that applying the circular economy model to the plastics problem provides a route to redesign, eliminate single-use and reuse plastics as potential solutions. Replacing petrochemical-based plastics with bioplastics “stand to contribute to more sustainable commercial plastic life cycles,” according to one study.
Plastic is a major contributor to pollution on land sea and even in the atmosphere, impacting ecosystems to an as yet uncertain degree. Some experts argue that applying the circular economy model to the plastics problem provides a route to redesign, eliminate single-use and reuse plastics as potential solutions. Replacing petrochemical-based plastics with bioplastics “stand to contribute to more sustainable commercial plastic life cycles,” according to one study. Image: Srikanth Mannepuri / Ocean Image Bank.
Global transport and mobility is another key sector where the circular economy can reap environmental rewards. For some experts this not only involves reducing resource consumption and pollution, improving sustainability of individual modes of transport (such as cars), but also taking a holistic approach to improve public transport networks to tackle global carbon emissions.
Global transport and mobility is another key sector where the circular economy can reap environmental rewards. For some experts this not only involves reducing resource consumption and pollution, improving sustainability of individual modes of transport (such as cars), but also taking a holistic approach to improve public transport networks to tackle global carbon emissions. Image: O.Taillon via Flickr
Replacing nonrenewable resources with biobased solutions, such as timber in the construction sector, is an important element of developing a biobased circular economy. But this particular solution comes with caveats, say experts, as it can place greater pressure on natural forests and biodiversity if not practiced in an environmentally conscious way.
Replacing nonrenewable resources with biobased solutions, such as timber in the construction sector, is an important element of developing a biobased circular economy. But this particular solution comes with caveats, say experts, as it can place greater pressure on natural forests and biodiversity if not practiced in an environmentally conscious way. Image: Wagner T. Cassimiro “Aranha” via Flickr

Current linear food systems exact a heavy environmental toll. Applying circularity and introducing regenerative agricultural practices could lessen this impact and free up land for other purposes, such as rewilding, according to experts. A large-scale circular shift in food production could halt and reverse global biodiversity loss by 2050, according to Sifra.
Current linear food systems exact a heavy environmental toll. Applying circularity and introducing regenerative agricultural practices could lessen this impact and free up land for other purposes, such as rewilding, according to experts. A large-scale circular shift in food production could halt and reverse global biodiversity loss by 2050, according to Sifra. Image: Global Water Forum via Flickr
Have you read?
Cement and steel are globally important construction materials but currently carbon-intensive to produce and environmentally harmful. Designing infrastructure for reuse, increasing durability, and substituting alternative biobased materials, such as wood, are part of the package of circular solutions. However, increased wood use requires care: Studies show that enlarging tree plantations is a far more circular approach than timber cutting natural forests.
Cement and steel are globally important construction materials but currently carbon-intensive to produce and environmentally harmful. Designing infrastructure for reuse, increasing durability, and substituting alternative biobased materials, such as wood, are part of the package of circular solutions. However, increased wood use requires care: Studies show that enlarging tree plantations is a far more circular approach than timber cutting natural forests. Image: Pawel Grzegorz via Pixabay
Aluminum is one of the world’s most widely recycled materials. Recycling is achieved with 95% less energy than virgin production. It’s estimated that by 2050, recycled aluminum could supply 50% of Europe’s demand, vastly cutting greenhouse gas emissions. But there is still vast room for improvement in the EU; the global aluminum recycling level is only around 70-75%; that results in a loss of some 7 million tons per year. “The potential impact of circularity on reducing aluminum sector emissions cannot be underestimated,” write experts at the World Economy Forum.
Aluminum is one of the world’s most widely recycled materials. Recycling is achieved with 95% less energy than virgin production. It’s estimated that by 2050, recycled aluminum could supply 50% of Europe’s demand, vastly cutting greenhouse gas emissions. But there is still vast room for improvement in the EU; the global aluminum recycling level is only around 70-75%; that results in a loss of some 7 million tons per year. “The potential impact of circularity on reducing aluminum sector emissions cannot be underestimated,” write experts at the World Economy Forum. Image: La Mary Anne via Flickr

Applying circular economy principles to four specific sectors — food, construction, textiles and forestry — could dramatically reduce material and environmental footprints. Cattle ranching, in particular, is responsible for significant deforestation, climate change and other environmental impacts, say experts.
Applying circular economy principles to four specific sectors — food, construction, textiles and forestry — could dramatically reduce material and environmental footprints. Cattle ranching, in particular, is responsible for significant deforestation, climate change and other environmental impacts, say experts. Image: Tropical Forest Fires Watch via Flickr
Steel is an example of both the success, and the as yet unachieved potential, of the circular economy, say experts. Globally, steel is one of the world’s most recycled materials. Reuse is far less carbon intensive than raw production, which still largely depends upon coal. But iron mines continue providing much newly mined ore. According to researchers at University College London, recycled steel could save “86% of greenhouse gas emissions, 85% of energy, 76% of water pollution and 40% of water consumption,” by using electric arc furnaces to refashion waste. Designing steel products for easy recycling could also reduce material extraction and the overall carbon and material footprint of the industry.
Steel is an example of both the success, and the as yet unachieved potential, of the circular economy, say experts. Globally, steel is one of the world’s most recycled materials. Reuse is far less carbon intensive than raw production, which still largely depends upon coal. But iron mines continue providing much newly mined ore. According to researchers at University College London, recycled steel could save “86% of greenhouse gas emissions, 85% of energy, 76% of water pollution and 40% of water consumption,” by using electric arc furnaces to refashion waste. Designing steel products for easy recycling could also reduce material extraction and the overall carbon and material footprint of the industry. Image: PublicDomainPictures via Pixabay
The green energy transition will demand an enormous increase in the use of minerals and materials to create renewable energy infrastructure and electric vehicles. “We’re going to need roughly six times the amount of material for the energy transition,” says Ramona Liberoff, executive director of the Platform for Accelerating the Circular Economy. A circular economy could support recapture of minerals and materials already in use — in applications such as phones and other electronics. This could meet a swath of future material demand.
The green energy transition will demand an enormous increase in the use of minerals and materials to create renewable energy infrastructure and electric vehicles. “We’re going to need roughly six times the amount of material for the energy transition,” says Ramona Liberoff, executive director of the Platform for Accelerating the Circular Economy. A circular economy could support recapture of minerals and materials already in use — in applications such as phones and other electronics. This could meet a swath of future material demand. Image: Markus Distelrath via Pixabay
A farmer with her cattle in the Andes, Ecuador. If the dangerous transgression of planetary boundaries is to be avoided, circular solutions will need to be practiced not only in the Industrialized North, but in the Global South — with deep consideration given to social equity.
A farmer with her cattle in the Andes, Ecuador. If the dangerous transgression of planetary boundaries is to be avoided, circular solutions will need to be practiced not only in the Industrialized North, but in the Global South — with deep consideration given to social equity. Image: David Ceballos vis Flickr

A key challenge to achieving circular solutions is ensuring a “just” transition, according to some experts. In particular, this means different pathways for countries in the Global South as compared with the Global North. Those Global South strategies would focus more on traditional communities and livelihoods and on utilizing local knowledge, and achieving social and economic equity.
A key challenge to achieving circular solutions is ensuring a “just” transition, according to some experts. In particular, this means different pathways for countries in the Global South as compared with the Global North. Those Global South strategies would focus more on traditional communities and livelihoods and on utilizing local knowledge, and achieving social and economic equity. Image: Oton Barros (DSR/OBT/INPE) via Flickr
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Circular EconomyEconomic ProgressClimate Change
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Aluminium demand will rise 40% by 2030. Here’s how to make it sustainable

Jelena Aleksić and Daniel Boero Vargas

November 28, 2023

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2023 World Economic Forum