Climate Action

3 climate factors predict upcoming mosquito activity

Dengue transmission is expected to intensify due to climate change.

Dengue transmission is expected to intensify due to climate change. Image: Unsplash/Syed Ali

Rachel Harrison
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Climate Action?
The Big Picture
Explore and monitor how Climate Indicators is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Climate Indicators

  • New study has found that increases in three climate variables—temperature, rainfall, and ocean warming—can predict mosquito population growth in Sri Lanka for the next one to six months.
  • Researchers say these findings can inform the design and timing of programs to limit the spread of mosquito-borne diseases like dengue.
  • These climate factors are able to serve as predictors of mosquito activity at different times and can help officials to implement effective mosquito control interventions before a disease epidemic emerges.

Increases in three climate factors—temperature, rainfall, and ocean warming—can predict mosquito population growth in Sri Lanka for the next one to six months, according to a new study.

The findings can inform the design and timing of programs to limit the spread of mosquito-borne diseases like dengue, the researchers say.

Nearly half of the world’s population lives in areas at risk for dengue, which has become a major public health problem in Sri Lanka. Because developing a safe and effective vaccine against dengue has proven to be difficult, controlling mosquito populations is considered to be the most effective strategy to prevent the virus’s spread.

Dengue transmission patterns in Sri Lanka closely follow the country’s monsoonal rainfalls, with peak transmission in July following the southwest monsoon, followed by a smaller peak in December to January after the northeast monsoon.

Workers and naval officers trying to control mosquito spread to prevent dengue transmission.
Workers and naval officers trying to control mosquito spread to prevent dengue transmission. Image: Gayan Liyanage

Climate change, mosquitoes and dengue prevention

Research shows a relationship between some climate variables and the quantity, feeding patterns, and lifespan of Aedes mosquitoes, which transmit dengue, but the relationship between Aedes mosquito activity and climate is still not well understood.

“Dengue transmission is expected to intensify due to climate change. If we can use climate and weather data to predict seasonal patterns of mosquitos, this timely information would allow public health authorities to proactively manage mosquito control operations,” says Yesim Tozan, assistant professor of global health at the New York University School of Global Public Health, and author of the study in The Lancet Planetary Health.

The researchers aimed to quantify the effect of climate on Aedes mosquitoes in Kalutara, a district in southwestern Sri Lanka with a persistent, high presence of dengue. They measured three monthly weather variables—rainfall, temperature, and Oceanic Niño Index—from 2010 to 2018.

The Oceanic Niño Index measures whether waters in the tropical Pacific Ocean are warmer or cooler than average, with El Niño and La Niña phases triggering changes in weather. Three El Niño events, or unusually warm ocean temperatures, occurred from 2010 to 2018.

The researchers then compared the climate variables with systematically collected surveillance data of mosquitoes in Kalutara, including measurements of Aedes mosquitoes and larvae found in homes and outdoor water containers.

All three climate variables predicted mosquito activity, but with different time lags. More rainfall—which often led to outdoor containers filling with water, creating mosquito breeding sites—predicted a greater prevalence of mosquitoes within the same month. Hotter temperatures were associated with increases in mosquitoes one to two months later. The warmer ocean temperatures of El Niño events predicted increases in mosquitoes with a five to six months delay.

“These climate factors have the potential to serve as predictors of mosquito activity at different times and may enable us to quantify the risk and implement effective mosquito control interventions before a dengue epidemic emerges,” says lead author Prasad Liyanage of the Sri Lanka Ministry of Health and Umeå University in Sweden, who will join NYU School of Global Public Health this fall as a postdoctoral associate.

“Tracking El Niño events has the added advantage of predicting the seasonal prevalence of Aedes mosquitoes with a lead time of six months, which could provide opportunities to issue early warnings on mosquito prevalence for the entire dengue season,” Tozan says.

Discover

What’s the World Economic Forum doing about climate change?

Have you read?
Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Climate ActionNature and Biodiversity
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Floods in the Arabian Gulf remind us that investing in climate mitigation cannot wait

Neeshad Shafi

May 1, 2024

1:52

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum