What can ancient ocean temperatures tell us about the climate?

Share:

This article is published in collaboration with Yale News.

Scientists are taking the temperature of ancient seas to discover how they’ve shaped global climate.

In a study published in the journal Nature Geoscience, a Yale-led research team explored differences in ocean temperatures over the last 5 million years. The team created a historical record for sea temperature gradients and compared it with state-of-the-art climate model simulations.

Map of modern surface ocean temperatures and paleodata sites with data going back to 5 million years and used in this study. The new record comes from site 1125 in the South Pacific. Arrows indicate the surface temperature gradients explored by the researchers.
151123-ocean temperatures climate change Yale

Sea temperature gradients (contrasts) in the tropics and subtropics are the engines of Earth’s climate. They control global atmospheric circulations, as well as the transport of water vapor for the planet.

As part of the study, the researchers investigated climate evolution since the early Pliocene epoch, 4 to 5 million years ago. They looked at the development of gradients along the equator and mid-latitude regions to the north and south.

The early Pliocene was the last time atmospheric carbon dioxide concentrations were as high as today’s levels, yet ocean temperatures during the Pliocene — from the subtropics to the Artic — were much warmer than today. The tropical Pacific, for example, had conditions resembling a modern El Niño that persisted for thousands of years.

“The puzzle is how to explain this warmth during the Pliocene,” said lead author Alexey Fedorov, a professor of geology and geophysics at Yale. “Ocean temperature contrasts are a major part of this puzzle.”

As part of their work, the researchers developed a temperature record for the mid-latitude South Pacific, where there had been no long-term temperature record. The new data shows that water temperatures during the Pliocene were about 5 degrees Celsius warmer than today.

“It has been argued that temperature contrasts were weaker during the Pliocene, implying a weaker atmospheric circulation,” Fedorov said. “In our study, we confirm the reduced contrasts and show a tight link between ocean east-west (equatorial) and north-south (equator to mid-latitudes) temperature variations.”

Co-authors of the study are Natalie Burls of George Mason University (formerly a postdoctoral researcher at Yale), Kira Lawrence of Lafayette College, and Laura Peterson of Luther College.

The U.S. Department of Energy Office of Science, the National Science Foundation, the National Oceanic and Atmospheric Administration, and the David and Lucile Packard Foundation supported the research.

Publication does not imply endorsement of views by the World Economic Forum.

To keep up with the Agenda subscribe to our weekly newsletter.

Author: Jim Shelton is the Senior Communications Officer for Science & Medicine at Yale University.

Image: A large piece of coral can be seen in a lagoon. REUTERS/David Gray.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo

Forum Stories newsletter

Bringing you weekly curated insights and analysis on the global issues that matter.