Where do the Earth's cosmic rays come from?

The galaxy cluster SDSS J1038+4849 is pictured in this undated handout image taken with the NASA/ESA Hubble Space Telescope. As a result of the phenomenon of gravitational lensing, it seems to be smiling. In the case of this "happy face"?, the two eyes are very bright galaxies and the smile lines are actually arcs caused by strong gravitational lensing.  Galaxy clusters are the most massive structures in the Universe and exert such a powerful gravitational pull that they warp the spacetime around them and act as cosmic lenses which can magnify, distort and bend the light behind them. This phenomenon, crucial to many of Hubble's discoveries, can be explained by Einstein's theory of general relativity.

New observations from a NASA spacecraft has shown most of the cosmic rays come from clusters of massive stars near to Earth. Image: REUTERS/NASA/Handout via Reuters

Diana Lutz
Senior News Director, Washington University in St Louis
Share:
The Big Picture
Explore and monitor how Space is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Space

Most of the cosmic rays arriving at Earth from our galaxy come from nearby clusters of massive stars.

The finding is based on new observations from the Cosmic Ray Isotope Spectrometer (CRIS), an instrument aboard NASA’s Advanced Composition Explorer (ACE) spacecraft.

“Our detection of radioactive cosmic-ray iron nuclei is a smoking gun.”

The distance between the galactic cosmic rays’ point of origin and Earth is limited by the survival of a very rare type of cosmic ray that acts like a tiny clock. The cosmic ray is a radioactive isotope of iron, 60Fe, which has a half-life of 2.6 million years. In that time, half of these iron nuclei decay into other elements.

In the 17 years CRIS has been in space, it detected about 300,000 galactic cosmic-ray nuclei of ordinary iron, but just 15 of the radioactive 60Fe .

“Our detection of radioactive cosmic-ray iron nuclei is a smoking gun indicating that there has been a supernova in the last few million years in our neighborhood of the galaxy,” says Robert Binns, research professor of physics at Washington University in St. Louis and lead author of the paper published in Science.

“The new data also show the source of galactic cosmic rays is nearby clusters of massive stars, where supernova explosions occur every few million years,” says Martin Israel, professor of physics at Washington University and a coauthor of the paper.

The radioactive iron is believed to be produced in core-collapse supernovae—violent explosions that mark the death of massive stars—which occur primarily in clusters of massive stars called OB associations.

There are more than 20 such associations close enough to Earth to be the source of the cosmic rays, including subgroups of the nearby Scorpius and Centaurus constellations, such as Upper Scorpius (83 stars), Upper Centaurus Lupus (134 stars), and Lower Centaurus Crux (97 stars). Because of their size and proximity, these are the likely sources of the radioactive iron nuclei CRIS detected, the scientists say.

An incriminating timeline

The 60Fe results add to a growing body of evidence that galactic cosmic rays are created and accelerated in OB associations.

Earlier CRIS measurements of nickel and cobalt isotopes show there must be a delay of at least 100,000 years between creation and acceleration of galactic cosmic-ray nuclei, Binns says.

This time lag also means that the nuclei synthesized in a supernova are not accelerated by that supernova, but by the shock wave from a second nearby supernova, Israel says, one that occurs quickly enough that a substantial fraction of the 60Fe from the first supernova has not yet decayed.

Together, these time constraints mean the second supernova must occur between 100,000 and a few million years after the first supernova. Clusters of massive stars are one of the few places in the universe where supernovae occur often enough, and close enough together, to bring this off.

“So our observation of 60Fe lends support to the emerging model of cosmic-ray origin in OB associations,” Israel adds.

Corroborating evidence?

Although the supernovae in a nearby OB association that created the 60Fe CRIS observed happened long before people were around to observe suddenly brightening stars (novae), they also may have left traces in Earth’s oceans and on the moon.

In 1999, astrophysicists proposed that a supernova explosion in Scorpius might explain the presence of excessive radioactive iron in 2.2 million-year-old ocean crust. Two research papers recently published in Nature bolster this case.

One research group examined 60Fe deposition worldwide, and argued that there might have been a series of supernova explosions, not just one. The other simulated by computer the evolution of Scorpius-Centaurus association in an attempt to nail down the sources of the 60Fe.

Lunar samples also show elevated levels of 60Fe consistent with supernova debris arriving at the moon about 2 million years ago. And here, too, there is recent corroboration. A paper just published in Physical Review Letters describes an analysis of nine core samples brought back by the Apollo crews.

What are cosmic rays?

Cosmic rays were discovered before World War I but named in the 1920s by the famous physicist Robert Millikin, who called them “rays” because he thought they were a form of high-energy electromagnetic radiation.

But in the early 1930s, researchers measured cosmic-ray intensity at 69 locations around the Earth. Variations in the intensity with magnetic latitude showed that cosmic rays were deflected by the Earth’s magnetic field, and must therefore be charged particles (the nuclei of atoms stripped of their electrons) rather than electromagnetic radiation.

Of these nuclei, 90 percent are hydrogen nuclei (protons), 9 percent are helium nuclei and only one percent are the nuclei of heavier elements. But that one percent provides the best clues to how the particles are created.

Although energetic particles coming from our sun are sometimes called cosmic rays, astrophysicists prefer to call these comparatively low-energy particles SEPs, or solar energetic particles.

They reserve the term “cosmic ray” for particles coming from outside our solar system, either from our galaxy or beyond. The source of some extremely rare particles is still unknown.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum