Emerging Technologies

How an 18th Century steam engine is helping quantum physicists

Puffing Billy steam locomotive 6A is reversed into the engine shed for the night at Belgrave station near Melbourne, October 17, 2014. While the discovery of steam power 200 years ago powered the Industrial Revolution, the world long ago shunted most steam trains onto the sidings of history. But in one small corner of rural Australia, the sights, sounds and smells of the Industrial Revolution remain very much alive. In the picturesque Dandenong Ranges on the eastern outskirts of Melbourne, Puffing Billy is Australia's last steam engine railway. Picture taken October 17, 2014.   REUTERS/Jason Reed   (AUSTRALIA - Tags: SOCIETY TRANSPORT TPX IMAGES OF THE DAY)ATTENTION EDITORS: PICTURE 13 OF 24 FOR WIDER IMAGE PACKAGE 'THE CHARM OF NARROW GAUGE FROM 1900'. TO FIND ALL IMAGES SEARCH 'DANDENONG' - RTR4CHVG

Research has used the work of James Watt to make a breakthrough in the development of quantum technologies. Image: REUTERS/Jason Reed

Clive Emary
Lecturer, Newcastle University
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Emerging Technologies?
The Big Picture
Explore and monitor how Innovation is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Innovation

The hissing sound you hear in the background when you turn up the volume of your music player is called “noise”. Most of this hiss is due to the thermal motion of electrons in the music-player circuitry. Just like molecules in a hot gas, electrons in the circuitry are constantly jiggling about in a random fashion, and this motion this gives rise to an unwanted noise signal.

But there is another type of noise that only comes into play when we have an electrical current flowing. This noise is known as shot noise. Obstacles that generate shot noise in this way are found in many electronic components, such as diodes and some transistors, and electronic engineers take great efforts to try to get rid of the effects of all sources of noise, including shot noise, in their designs.

Now a new study has shown that shot noise can be eliminated at its microscopic origin. And to do so, they have borrowed an idea from an unlikely source – the early days of the steam engine.

Quantum weirdness

Shot noise has its origins in the fact that electrical current is composed of a stream of individual particles – electrons – and that the behaviour of these particles is governed by the strange laws of quantum mechanics.

When an electron encounters an obstacle that you’d think would block its path, quantum mechanics offers the possibility that it can pass through it unhindered. This is called quantum tunnelling, and it makes the seemingly impossible possible. The important thing about quantum tunnelling is that it is a random process — quantum mechanics can tell us with what probability an electron might tunnel, but it can’t tell us whether any particular electron will tunnel or not.

Quantum tunnelling
Image: Cranberry

Thus, if a stream of electrons hits an obstacle, some will tunnel and some will not, and this happens in a completely random fashion. If we could listen to the arrival of a stream of electrons tunnelling in this way, it would sound something like the random pitter-patter of raindrops on a flat roof. It is this randomness, as compared with the regimented drip-drip-drip of a tap, that makes up shot noise.

In the 18th century, James Watt was struggling to get his steam engine to run at a constant speed. To solve this problem, he came up with the “centrifugal governor” in 1788, a contraption that consisted of two metal balls rotating on a vertical spindle driven by the steam engine. If the engine ran too fast, the balls would move upwards under the centrifugal force (a force acting on a body moving in a circular path is directed away from the centre around which the body is moving).

This motion was coupled into a valve which then reduced the flow of steam through the engine, slowing it down. Conversely, if the engine was running too slowly, the balls would drop, the valves would open and the engine would speed up. In this way, Watt was able to stabilise the output of his engine around a constant speed. In doing so he had had come up with an early example of what we would now call feedback control.

James Watt to the rescue

The new experiment focuses on an ultra-small electronics device known as the single-electron transistor, which may one day form the basis of extremely efficient, miniature electronics. These single-electron transistors are somewhat like ordinary transistors, which switch electronic signals, but taken to the extreme limit of miniaturisation such that electrons move through them one at a time. This happens via quantum tunneling, which means the current through a single-electron transistor suffers from the randomness of shot noise.

Using sensitive charge measurements, the researchers were able to detect exactly when an electron had tunnelled through the transistor. Based on this electron counting, they then adjusted the voltages of the transistor, following Watt’s recipe for the centrifugal governor: if more electrons than normal had tunnelled, they changed the voltages to reduce the flow; if fewer had tunnelled, the voltages were changed to increase the flow.

In this way, they were able to show that, after a certain time had elapsed, the total number of electrons to have tunnelled through the device could be controlled precisely, with the results being almost entirely free of the randomness of the noisy tunnelling process.

The technique may not make it into your consumer electronics any time soon. The research was carried out at low temperature on a single device so we’d first need to make it work at room temperature and scale up the function. Nevertheless, it does represent an important breakthrough, as it reports the first application of feedback control in electronics that acts at the level of the individual electron.

The results are especially important for the development of future quantum technologies, which look to harness the peculiarities of quantum physics to make devices that vastly outperform our current best. Such machines could be a huge boost in areas including secure communication, code-breaking, precision measurement and quantitative analysis of “big data”. Quantum technologies however require an exquisite degree of control and, as this research shows, tried-and-true feedback techniques with their roots in the steam age may still have an important role to play.

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Future of the internet: Why we need convergence and governance for sustained growth

Thomas Beckley and Ross Genovese

April 25, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum