Fourth Industrial Revolution

Quantum computing might have just gone to a whole new level

A D-Wave Vesuvius processor is pictured during a media tour of the Quantum Artificial Intelligence Laboratory (QuAIL) at NASA Ames Research Center in Mountain View, California, December 8, 2015. Housed inside the NASA Advanced Supercomputing (NAS) facility, the 1,097-qubit system is the largest quantum annealer in the world and a joint collaboration between NASA, Google, and the Universities Space Research Association (USRA).  REUTERS/Stephen Lam - GF10000259192

Researchers from the University of Tokyo have developed a computing power unlike anything we’ve experienced before. Image: REUTERS/Stephen Lam

Dom Galeon
Writer, Futurism
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Fourth Industrial Revolution?
The Big Picture
Explore and monitor how Fourth Industrial Revolution is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Fourth Industrial Revolution

In brief

A pair of researchers from the University of Tokyo have developed what they're calling the "ultimate" quantum computing method. Unlike today's systems, which can currently only handle dozens of qubits, the pair believes their model will be able to process more than a million.

Around and around

Today’s working quantum computers are already more powerful than their traditional computing counterparts, but a pair of researchers from the University of Tokyo think they’ve found a way to make these remarkable machines even more powerful. In a research paper published in Physical Review Letters, Akira Furusawa and Shuntaro Takeda detail their novel approach to quantum computing that should allow the machines to perform a far greater number of computations than other quantum computers.

At the center of their new method is a basic optical quantum computing system — a quantum computer that uses photons (light particles) as quantum bits(qubits) — that Furusawa devised in 2013.

This machine occupies a space of roughly 6.3 square meters (67 square feet) and can handle only a single pulse of light, and increasing its capabilities requires the connecting of several of these large units together, so instead of looking into ways to increase its power by expanding the system’s hardware, the researchers devised a way to make one machine accommodate many pulses of light via a loop circuit.

In theory, multiple light pulses, each carrying information, could go around the circuit indefinitely. This would allow the circuit to perform multiple tasks, switching from one to another by instant manipulation of the light pulses.

The power of qubits

Unlike traditional binary bits that are either a one or a zero, qubits are entangled particles that can be either a one, a zero, or both at the same time. These qubits allow quantum computers to perform computations much faster than regular computers can, but most quantum computing models today can manipulate only a dozen or so qubits. Earlier this year, a team of Russian researchers revealed their quantum computer that could handle 51 qubits, and that was a huge breakthrough in the field.

Furusawa and Takeda believe they’ve managed to go well beyond this, asserting in a press release that one of their circuits is theoretically capable of processing over a million qubits. That sort of computing power is unlike anything we’ve ever experienced before. It would be enough to solve the greatest computing problems of today, facilitating breakthroughs in medical research or handling large datasets to improve machine learning models.

The next step is for Furusawa and Takeda to translate their theory into a working model. “We’ll start work to develop the hardware, now that we’ve resolved all problems except how to make a scheme that automatically corrects a calculation error,” Furusawa said, according to The Japan Times. If it works as expected, this system will truly live up to its moniker as the “ultimate” quantum computing method.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Fourth Industrial RevolutionEconomic Progress
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Space: The $1.8 Trillion Opportunity for Global Economic Growth

Bart Valkhof and Omar Adi

February 16, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum