• Current lithium ion batteries can be ethically and environmentally problematic.
  • Only a small percentage of lithium ion batteries are recycled and the cobalt needed to make them is mined using child labor in some cases.
  • New research in Nature has described a new battery technology platform which involves a poypeptide organic radical construction.
  • Scientists are currently working to develop this completely metal-free battery, which marks significant progress towards a sustainable and recyclable model.

A new metal-free battery platform could lead to more sustainable, recyclable batteries that degrade on demand.

The introduction of lithium-ion (Li-ion) batteries has revolutionized technology as a whole, leading to major advances in consumer goods across nearly all sectors.

While the availability of technology is generally a good thing, the rapid growth has led directly to several key ethical and environmental issues surrounding the use of Li-ion batteries.

Current Li-ion batteries use significant amounts of cobalt, which in several well-documented international cases is mined using child labor in dangerous working environments. Additionally, only a very small percentage of Li-ion batteries are recycled, increasing the demand for cobalt and other strategic elements.

New research in Nature describes a method that could lead to battery production moving away from cobalt. In the paper, researchers outline a new battery technology platform that is completely metal-free. This new battery technology platform uses a polypeptide organic radical construction.

“By moving away from lithium and working with these polypeptides, which are components of proteins, it really takes us into this realm of not only avoiding the need for mining precious metals, but opening opportunities to power wearable or implantable electronic devices and also to easily recycle the new batteries,” says Karen Wooley, professor in the chemistry department at Texas A&M University. “They [polypeptide batteries] are degradable, they are recyclable, they are non-toxic, and they are safer across the board.”

Batteries Mining and Metals Sustainable Development
Scientists are currently working to develop this completely metal-free battery.
Image: Nature

The all-polypeptide organic radical battery composed of redox-active amino-acid macromolecules also solves the problem of recyclability. The components of the new battery platform can be degraded on demand in acidic conditions to generate amino acids, other building blocks, and degradation products—one of the major breakthroughs in this research, says coauthor Jodie Lutkenhaus, professor in the chemical engineering department.

“The big problem with lithium-ion batteries right now is that they’re not recycled to the degree that we are going to need for the future electrified transportation economy,” Lutkenhaus says. “The rate of recycling lithium-ion batteries right now is in the single digits. There is valuable material in the lithium-ion battery, but it’s very difficult and energy intensive to recover.”

The development of a metal-free, all-polypeptide organic radical battery composed of redox-active amino-acid macromolecules that degrade on demand marks significant progress toward sustainable, recyclable batteries that minimize dependence on strategic metals.

What's the World Economic Forum doing about the transition to clean energy?

Moving to clean energy is key to combating climate change, yet in the past five years, the energy transition has stagnated.

Energy consumption and production contribute to two-thirds of global emissions, and 81% of the global energy system is still based on fossil fuels, the same percentage as 30 years ago. Plus, improvements in the energy intensity of the global economy (the amount of energy used per unit of economic activity) are slowing. In 2018 energy intensity improved by 1.2%, the slowest rate since 2010.

Effective policies, private-sector action and public-private cooperation are needed to create a more inclusive, sustainable, affordable and secure global energy system.

Benchmarking progress is essential to a successful transition. The World Economic Forum’s Energy Transition Index, which ranks 115 economies on how well they balance energy security and access with environmental sustainability and affordability, shows that the biggest challenge facing energy transition is the lack of readiness among the world’s largest emitters, including US, China, India and Russia. The 10 countries that score the highest in terms of readiness account for only 2.6% of global annual emissions.

To future-proof the global energy system, the Forum’s Shaping the Future of Energy and Materials Platform is working on initiatives including, Systemic Efficiency, Innovation and Clean Energy and the Global Battery Alliance to encourage and enable innovative energy investments, technologies and solutions.

Additionally, the Mission Possible Platform (MPP) is working to assemble public and private partners to further the industry transition to set heavy industry and mobility sectors on the pathway towards net-zero emissions. MPP is an initiative created by the World Economic Forum and the Energy Transitions Commission.

Is your organisation interested in working with the World Economic Forum? Find out more here.

As a next step, Wooley and Lutkenhaus have begun working in collaboration with Daniel Tabor, assistant professor in the chemistry department, through a 2020 Texas A&M Triads for Transformation (T3) grant that aims to utilize machine learning to optimize the materials and structure of the battery platform.

Alexandra Easley, a doctoral student in the materials science and engineering department, and Tan Nguyen, a former doctoral student from the chemistry department, now at the University of Michigan, are the study’s lead authors.

The National Science Foundation, the Welch Foundation, and the US Department of Energy Office of Science funded the work.