• MIT researchers have created an algorithm to ensure the successful co-operation of information gathering robot teams - a collaborative, rather than sequential method.
  • The method, called Distributed Local Search improves the robot team’s performance by adding or removing individual robot’s trajectories from the group’s overall plan.
  • This ensures that no energy is wasted by a robot searching for minimal information.
  • Following further research, the Distributed Local Search method could have other potential applications for robots such as aerial surveillance and ocean monitoring, where energy conservation is essential.

Sometimes, one robot isn’t enough.

Consider a search-and-rescue mission to find a hiker lost in the woods. Rescuers might want to deploy a squad of wheeled robots to roam the forest, perhaps with the aid of drones scouring the scene from above. The benefits of a robot team are clear. But orchestrating that team is no simple matter. How to ensure the robots aren’t duplicating each other’s efforts or wasting energy on a convoluted search trajectory?

MIT researchers have designed an algorithm to ensure the fruitful cooperation of information-gathering robot teams. Their approach relies on balancing a tradeoff between data collected and energy expended — which eliminates the chance that a robot might execute a wasteful maneuver to gain just a smidgeon of information. The researchers say this assurance is vital for robot teams’ success in complex, unpredictable environments. “Our method provides comfort, because we know it will not fail, thanks to the algorithm’s worst-case performance,” says Xiaoyi Cai, a PhD student in MIT’s Department of Aeronautics and Astronautics (AeroAstro).

The research will be presented at the IEEE International Conference on Robotics and Automation in May. Cai is the paper’s lead author. His co-authors include Jonathan How, the R.C. Maclaurin Professor of Aeronautics and Astronautics at MIT; Brent Schlotfeldt and George J. Pappas, both of the University of Pennsylvania; and Nikolay Atanasov of the University of California at San Diego.

Robot teams have often relied on one overarching rule for gathering information: The more the merrier. “The assumption has been that it never hurts to collect more information,” says Cai. “If there’s a certain battery life, let’s just use it all to gain as much as possible.” This objective is often executed sequentially — each robot evaluates the situation and plans its trajectory, one after another. It’s a straightforward procedure, and it generally works well when information is the sole objective. But problems arise when energy efficiency becomes a factor.

Cai says the benefits of gathering additional information often diminish over time. For example, if you already have 99 pictures of a forest, it might not be worth sending a robot on a miles-long quest to snap the 100th. “We want to be cognizant of the tradeoff between information and energy,” says Cai. “It’s not always good to have more robots moving around. It can actually be worse when you factor in the energy cost.”

The researchers developed a robot team planning algorithm that optimizes the balance between energy and information. The algorithm’s “objective function,” which determines the value of a robot’s proposed task, accounts for the diminishing benefits of gathering additional information and the rising energy cost. Unlike prior planning methods, it doesn’t just assign tasks to the robots sequentially. “It’s more of a collaborative effort,” says Cai. “The robots come up with the team plan themselves.”

Artificial Intelligence Fourth Industrial Revolution Data Science Tech for Good Emerging Technologies
The advance could one day help robot teams solve real-world information gathering problems.
Image: Jose-Luis Olivares, MIT

Cai’s method, called Distributed Local Search, is an iterative approach that improves the team’s performance by adding or removing individual robot’s trajectories from the group’s overall plan. First, each robot independently generates a set of potential trajectories it might pursue. Next, each robot proposes its trajectories to the rest of the team. Then the algorithm accepts or rejects each individual’s proposal, depending on whether it increases or decreases the team’s objective function. “We allow the robots to plan their trajectories on their own,” says Cai. “Only when they need to come up with the team plan, we let them negotiate. So, it’s a rather distributed computation.”

Distributed Local Search proved its mettle in computer simulations. The researchers ran their algorithm against competing ones in coordinating a simulated team of 10 robots. While Distributed Local Search took slightly more computation time, it guaranteed successful completion of the robots’ mission, in part by ensuring that no team member got mired in a wasteful expedition for minimal information. “It’s a more expensive method,” says Cai. “But we gain performance.”

AI, machine learning, technology

How is the World Economic Forum ensuring that artificial intelligence is developed to benefit all stakeholders?

Artificial intelligence (AI) is impacting all aspects of society — homes, businesses, schools and even public spaces. But as the technology rapidly advances, multistakeholder collaboration is required to optimize accountability, transparency, privacy and impartiality.

The World Economic Forum's Platform for Shaping the Future of Technology Governance: Artificial Intelligence and Machine Learning is bringing together diverse perspectives to drive innovation and create trust.

  • One area of work that is well-positioned to take advantage of AI is Human Resources — including hiring, retaining talent, training, benefits and employee satisfaction. The Forum has created a toolkit Human-Centred Artificial Intelligence for Human Resources to promote positive and ethical human-centred use of AI for organizations, workers and society.
  • Children and young people today grow up in an increasingly digital age in which technology pervades every aspect of their lives. From robotic toys and social media to the classroom and home, AI is part of life. By developing AI standards for children, the Forum is working with a range of stakeholders to create actionable guidelines to educate, empower and protect children and youth in the age of AI.
  • The potential dangers of AI could also impact wider society. To mitigate the risks, the Forum is bringing together over 100 companies, governments, civil society organizations and academic institutions in the Global AI Action Alliance to accelerate the adoption of responsible AI in the global public interest.
  • AI is one of the most important technologies for business. To ensure C-suite executives understand its possibilities and risks, the Forum created the Empowering AI Leadership: AI C-Suite Toolkit, which provides practical tools to help them comprehend AI’s impact on their roles and make informed decisions on AI strategy, projects and implementations.
  • Shaping the way AI is integrated into procurement processes in the public sector will help define best practice which can be applied throughout the private sector. The Forum has created a set of recommendations designed to encourage wide adoption, which will evolve with insights from a range of trials.
  • The Centre for the Fourth Industrial Revolution Rwanda worked with the Ministry of Information, Communication Technology and Innovation to promote the adoption of new technologies in the country, driving innovation on data policy and AI – particularly in healthcare.

Contact us for more information on how to get involved.

The advance could one day help robot teams solve real-world information gathering problems where energy is a finite resource, according to Geoff Hollinger, a roboticist at Oregon State University, who was not involved with the research. “These techniques are applicable where the robot team needs to trade off between sensing quality and energy expenditure. That would include aerial surveillance and ocean monitoring.”

Cai also points to potential applications in mapping and search-and-rescue — activities that rely on efficient data collection. “Improving this underlying capability of information gathering will be quite impactful,” he says. The researchers next plan to test their algorithm on robot teams in the lab, including a mix of drones and wheeled robots.

This research was funded in part by Boeing and the Army Research Laboratory’s Distributed and Collaborative Intelligent Systems and Technology Collaborative Research Alliance (DCIST CRA).