
实现负责任的人工智能治理的九项关键举措
各国政府正在规划不同的人工智能治理路径,这既激励企业以负责任的方式扩大人工智能规模,也带来了相应的复杂性。那些推动负责任的人工智能实践的企业将赢得利益相关方的信任,并超越竞争对手。人工智能治理联盟发布的新手册提供了九项可操作的战略,以应对内部障碍和外部生态系统挑战,为负责任的人工智能应用扫清阻碍。
Karla Yee Amezaga is Lead in the Data Policy team (Centre for the Fourth Industrial Revolution) and Lead of the "Resilient Governance and Regulation" working group of the AI Governance Alliance. She is originally from Mexico. She is passionate about exploring the ways in which AI, data and technology in general can promote digital transformation of governments, cross-sector collaboration, user-centered services, and inclusive development around the world. Prior to joining the Forum, Karla worked at the Inter-American Development Bank (IDB), supporting digital government and statistical capacity building projects. Before that, she worked at the World Bank, OECD, Ashoka Changemakers, and the Mexican Ministry of Foreign Affairs.
Karla holds a master’s degree in International Affairs from the University of California - San Diego (UCSD), and bachelor’s degrees in Political Science and in International Relations from the Autonomous Technological Institute of Mexico (ITAM).
各国政府正在规划不同的人工智能治理路径,这既激励企业以负责任的方式扩大人工智能规模,也带来了相应的复杂性。那些推动负责任的人工智能实践的企业将赢得利益相关方的信任,并超越竞争对手。人工智能治理联盟发布的新手册提供了九项可操作的战略,以应对内部障碍和外部生态系统挑战,为负责任的人工智能应用扫清阻碍。
El manual de estrategias de la Alianza para la Gobernanza de la IA ofrece nueve estrategias prácticas para reducir las barreras internas y los desafíos del ecosistema externo que bloquean...
The AI Governance Alliance's playbook delivers 9 actionable strategies to cut internal barriers and external ecosystem challenges blocking responsible AI.
La equidad de datos es una responsabilidad compartida que requiere una acción colectiva para impulsar sistemas de datos justos y equitativos. He aquí por qué.
Data equity is a shared responsibility that needs collective action to advance data systems that promote fair and just outcomes for everyone. Here's why.
Governments must keep pace with the rapid evolution of GenAI, addressing risks while supporting innovation. A new report offers a framework for governance.
医疗保健领域的历史算法偏见揭示了数据公平的迫切需求。一项研究发现,纠正医疗保健中的种族偏见可以将接受额外护理的黑人患者的比例从17.7%提高到46.5%。
El sesgo racial en los algoritmos de atención médica expone problemas más amplios en los sistemas de datos en todos los sectores. La equidad de datos puede lograr resultados más justos.
Racial bias in healthcare algorithms exposes broader issues in data systems. Learn how the concept of data equity can lead to fairer outcomes across industries.
SMEs addressing their data readiness needs is a strategic imperative that can drive efficiency, unlock growth potential and propel their productivity.








