Artificial Intelligence

How robotic legs could give amputees better balance

Byron Spice
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Artificial Intelligence?
The Big Picture
Explore and monitor how Artificial Intelligence is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Artificial Intelligence

This article is published in collaboration with Futurity.org.

Stumbles often lead to falls for people with artificial limbs, but a new robotic prosthesis may help users recover their balance by working much the same way human legs do.

The control strategy, devised by studying human reflexes and other neuromuscular control systems, has shown promise in simulation and in laboratory testing, producing stable walking gaits over uneven terrain and better recovery from trips and shoves.

“Powered prostheses can help compensate for missing leg muscles, but if amputees are afraid of falling down, they won’t use them,” says Hartmut Geyer, assistant professor of robotics at Carnegie Mellon University.

“Today’s prosthetics try to mimic natural leg motion, yet they can’t respond like a healthy human leg would to trips, stumbles, and pushes. Our work is motivated by the idea that if we understand how humans control their limbs, we can use those principles to control robotic limbs.”

Those principles might aid not only leg prostheses, but also legged robots. The findings applying the neuromuscular control scheme to prosthetic legs and, in simulation, to full-size walking robots, were presented recently at the IEEE International Conference on Intelligent Robots and Systems in Hamburg, Germany, and will be published in an upcoming paper in IEEE Transactions in Biomedical Engineering. The research focuses specifically on how this control scheme can improve balance recovery.

Geyer has studied the dynamics of legged walking and motor control for the past decade. Among his observations is the role of the leg extensor muscles, which generally work to straighten joints. The force feedback from these muscles automatically responds to ground disturbances, quickly slowing leg movement or extending the leg further, as necessary.

Researchers evaluated the neuromuscular model by using computer simulations and a cable-driven device about half the size of a human leg, called the Robotic Neuromuscular Leg 2. The leg test bed was funded by the Eunice Kennedy Shriver National Institute of Child Health & Human Development.

The research showed that the neuromuscular control method can reproduce normal walking patterns and that it effectively responds to disturbances as the leg begins to swing forward as well as late in the swing. More work will be necessary, because the control scheme doesn’t yet respond effectively to disturbances at mid-swing.

Powered prostheses have motors that can adjust the angle of the knee and ankle during walking, allowing a more natural gait. These motors also generate force to compensate for missing muscles, making it less physically tasking for an amputee to walk and enabling them to move as fast as an able-bodied person.

More than a million Americans have had a leg amputation and that number is expected to quadruple by 2050, Geyer says. About half of the amputee population reports a fear of falling and large numbers say the inability to walk on uneven terrain limits their quality of life.

“Robotic prosthetics is an emerging field that provides an opportunity to address these problems with new prosthetic designs and control strategies,” Geyer says.

Over the next three years, as part of a $900,000 National Robotics Initiative study funded through the National Science Foundation, the new technology will be further developed and tested using volunteers with above-the-knee amputations.

Steve Collins, associate professor of mechanical engineering and robotics, and Santiago Munoz of the University of Pittsburgh contributed to the study.

Publication does not imply endorsement of views by the World Economic Forum.

To keep up with the Agenda subscribe to our weekly newsletter.

Author: Byron Spice writes for Futurity.org.

Image: A robotic leg is pictured at the Adidas innovation laboratory in Herzogenaurach.  REUTERS/Michael Dalder (GERMANY – Tags: BUSINESS SCIENCE TECHNOLOGY SPORT OLYMPICS)

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

How we can prepare for the future with foundational policy ideas for AI in education

TeachAI Steering Committee

April 16, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum