Fourth Industrial Revolution

The mysterious alien cigar ‘asteroid’ is actually an interstellar lump of ice

NASA undated handout image obtained by the framing camera on the Dawn spacecraft shows the south pole of the giant asteroid Vesta. Scientists are discussing whether the circular structure that covers most of this image originated by a collision with another asteroid, or by internal processes early in the asteroid's history. The image was recorded from a distance of about 1,700 miles (2,700 kilometers). The image resolution is about 260 meters per pixel.  REUTERS/NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/Handout  (UNITED STATES - Tags: SCIENCE TECHNOLOGY) FOR EDITORIAL USE ONLY. NOT FOR SALE FOR MARKETING OR ADVERTISING CAMPAIGNS. THIS IMAGE HAS BEEN SUPPLIED BY A THIRD PARTY. IT IS DISTRIBUTED, EXACTLY AS RECEIVED BY REUTERS, AS A SERVICE TO CLIENTS - GM1E79G197501

Several astronomers have found that ‘Oumuamua cannot be tracked back to any known star. Image: REUTERS/NASA/JPL

Alan Fitzsimmons
Professor, Queen's University Belfast
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Fourth Industrial Revolution?
The Big Picture
Explore and monitor how Space is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Space

The fundamental job of astrophysicists and astronauts is to explore the universe, and find what is out there. This year, the universe explored us.

On October 19, the Pan-STARRS 1 survey telescope in Hawaii captured a faint streak of light during its nightly search for asteroids and comets. Astronomer Rob Weryk realised it had a trajectory unlike anything seen before, and follow-up data taken over the next few nights confirmed it had come from outside our solar system. Humanity had identified its first alien visitor from another star.

What exactly is this interstellar object, which has been named ‘Oumuamua from the Hawaiian for “the first messenger from afar reaching out to us”? This is a difficult question to answer because it was not clear how 'Oumuamua compares to other bodies that belong to our solar system. Its unusual elongated shape has even prompted some to question whether it might have been created artificially by an alien civilisation.

But my colleagues and I have now discovered that while it appears to be an unusually long rocky asteroid it may actually be an icy body covered in a protective crust of organic chemicals.

We were already pretty certain 'Oumuamua was not artificial. Radio telescopes have been used to listen for signals from 'Oumuamua but not heard anything. Its path through space also suggests that it is only moving because of gravity. So all initial lines of inquiry pointed to it being a natural object.

However, there was still a puzzle. The most likely visitor to our solar system would be a giant lump of ice. As it approached the sun, such an icy body should start to melt and release a tail of gas behind it . Yet, despite coming within 23m miles of our sun, ‘Oumuamua showed no sign of this kind of outgassing. Why, instead, did it look like an asteroid?

Our team reacted quickly to the discovery by getting time to use the Very Large Telescopein Chile and the William Herschel Telescope in La Palma within 48 hours. We used these facilities to measure how 'Oumuamua reflects sunlight by looking at the wavelength of the returned light. This powerful technique can reveal the composition of an object and whether it has rocky minerals of ices on its surface.

Image: The Conversation

Our data revealed its surface was red in visible light but appeared more neutral or grey in infra-red light. Previous laboratory experiments have shown this is the kind of reading you’d expect from a surface made of comet ices and dust that had been exposed to interstellar space for millions or billions of years. High-energy particles called cosmic rays dry out the surface by removing the ices. These particles also drive chemical reactions in the remaining material to form a crust of chemically organic (carbon-based) compounds.

So although ‘Oumuamua appeared as an asteroid-like point of light in our telescopes, it may be icy in its interior. And its insulating red rock-like surface could be the consequence of its lonely journey between the stars. Indeed, another study using the Gemini North telescopein Hawaii showed its colour is similar to some “trans-Neptunian objects” orbiting in the outskirts of our solar system, whose surfaces may have been similarly transformed.

Where did it come from?

The other big question is where did ‘Oumuamua come from? One possibility is that it emerged from a planet-building process. Planets are built from smaller rocky asteroids and icy comets, but this is a messy business. Many trillions of objects would have been thrown into interstellar space as our planets formed and settled down into their current orbits. Additionally, comets have been lost from the Oort Cloud surrounding our solar system, pulled away by passing stars and the tides from the Milky Way galaxy in which we live.

If all stars are as wasteful as our sun in building solar systems, there should be large numbers of interstellar objects out there in our galaxy. But we would only see them if they get close enough to the sun and Earth to be detected with our current generation of telescopes. Earlier this year I was part of a study that showed there could be 1015 (1,000 trillion) such objects per cubic light year.

Several astronomers have found that ‘Oumuamua cannot be tracked back to any known star, but it approached from the direction that the sun is moving towards. This is the most probable direction any interstellar object will come from, like clouds of insects hitting a car windscreen as you drive through them.

‘Oumuamua has already passed the orbit of Mars and is travelling outward above the asteroid belt. This winter, if you can find the Great Square of Pegasus in the night sky, you can wave farewell to our first interstellar visitor. But combining previous studies with the discovery of ‘Oumuamua suggests there should be a similar object somewhere within the orbit of Mars at any time, not yet seen. The universe is closer than we thought.

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

South Korean nuclear fusion reactor sets new record, and other technology news you need to know

Sebastian Buckup

April 19, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum