Fourth Industrial Revolution

Are driverless cars really as revolutionary as we think?

A driverless vehicle runs at Vanke's Building Research Centre testing area in Dongguan, south China's Guangdong province November 2, 2015. The country's largest property developer, China Vanke, is investing in its own robots to do certain jobs in the face of a labor shortage in the world's most populated country. This driverless car is among the robots that Vanke is aiming to bring in. Picture taken November 2, 2015. REUTERS/Tyrone Siu - GF20000044722

A 'tough sell' Image: REUTERS/Tyrone Siu

David Metz
Visiting professor in the Centre for Transport Studies, UCL
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Fourth Industrial Revolution?
The Big Picture
Explore and monitor how Fourth Industrial Revolution is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Fourth Industrial Revolution

The breathless hype around driverless electric vehicles once promised an urban transport “revolution”, with claims that new technologies would ease congestion and eliminate harmful emissions. The potential benefits of these new technologies are stimulating both activity and anxiety in the auto industry – specifically around whether the cost of investment will be justified by profits from sales of new vehicles.

The initial enthusiasm for driverless vehicles has gradually subsided, as the difficulties with introducing such technologies at scale in cities become better understood. As I explain in my new book Driving Change: Travel in the 21st Century, the future of the car is likely to be less exciting than many suppose. Rather than a revolution, these innovations will offer gradual change, when – and indeed if – the auto industry can make it worthwhile.

Of course, electric motors will help to reduce tailpipe emissions of carbon dioxide and other pollutants. But commercial success is likely to depend on the optimal choice of battery chemistry to maximise the car’s range, while delivering long-life, lightweight and fast recharging cells. The recent decision by British inventor James Dyson to cancel his electric car project highlights the risks for new entrants.

Automated systems can already relieve drivers of tasks such as parking, and may ultimately lead to driverless travel. Yet both the performance and timing of autonomous vehicles (AVs) are very uncertain – independent observers predict an extended timescale for wide deployment: perhaps the 2040s to 2050s.

Safety first

A key task is to agree safety standards for AVs. People are willing to accept some small risk of death or injury when at the wheel of their own car, even though 1,784 people were killed on UK roads in 2018. But when someone else in is charge – as for rail and air travel – we demand far higher standards. AVs are potentially much safer, since they could eliminate human error that is responsible for 95% of road accidents.

Yet to demonstrate safe performance would require huge amounts of on-road testing, once the technology reaches an acceptable standard. Proponents argue that the best is the enemy of the good, so that AVs should be accepted for general use once they are better than a good human driver, with the expectation that their safety performance will improve as the technology is refined with increasing experience.

Within the auto industry, there’s a sense of inevitability that driverless cars are the future. But there will need to be demonstrable benefits if the public is to pay the extra costs. Eliminating human taxi drivers could offer a substantial economic benefit: a robotic taxi summoned with an app is seen by some as an alternative to owning your own car.

Loading...
Have you read?

Yet the feasibility of robotaxis is far from clear, particularly in cities with historic street layouts and extensive kerbside parking, where narrow roads require negotiation between drivers going in opposite directions. Driverless vehicles are initially being deployed in well-defined low-speed locations such as campuses, airports and business parks. Motorways where pedestrians and cyclists are excluded offer another likely location – yet getting to and from such dedicated roads would require navigation through populated streets, where driverless performance could be problematic.

Still a tough sell

Traffic congestion is the most intractable problem of the road system, reflecting an excess of demand for car travel in relation to road capacity in towns and cities where there is generally both high population density and high car ownership. Privately owned AVs could actually add to congestion, since they would travel without a passenger, for instance returning home after dropping people off, or cruising round the block while the owner is shopping.

Historic transport innovations have allowed step changes in the speed of travel: the railway in the 19th century, the car in the 20th. Increases in access to destinations, services, opportunities and choices made possible by such innovations have justified huge investments by manufacturers, public authorities and the travelling public.

By contrast, the new transport innovations will not increase the speed of travel. The car of the future will be electrically propelled, have extensive digital functionality and driverless options. But it’s unlikely to make much faster progress through traffic than the car of today.

These new transport innovations will not transform why and where people travel. Rather, they will offer incremental improvement to the quality of our journeys. As the auto industry switches to electric propulsion and develops driverless options, the lack of a transformational offering to car buyers could make it hard to recover the costs of development.

Drivers will take up these innovations if they offer good value. Now, the task of the auto industry is to drive down costs, to make their offerings more attractive – as it has always aimed to do.

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Fourth Industrial RevolutionEmerging Technologies
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Space: The $1.8 Trillion Opportunity for Global Economic Growth

Bart Valkhof and Omar Adi

February 16, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum