Emerging Technologies

The aerodynamics of mosquito wings are inspiring quieter drones

Image: Егор Камелев/Unsplash

John Hopkins University
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Emerging Technologies?
The Big Picture
Explore and monitor how Drones is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Technological Transformation

A mosquito flaps its wings not just to stay aloft but also to generate sound and point that buzz toward a potential mate, according to new research.

The new findings about the aerodynamics of mosquito wings could have implications for building quieter drones and for devising nontoxic methods to trap and exterminate the pests.

In a paper in Bioinspiration and Biomimetics, the researchers explain the aerodynamics and acoustics of the mosquito mating ritual through computer modeling.

“The same wings that are producing sound are also essential for them to fly,” says Rajat Mittal, a professor in the mechanical engineering department at Johns Hopkins University and an expert in computational fluid dynamics. “They somehow have to do both at the same time. And they’re effective at it. That’s why we have so much malaria and other mosquito-borne diseases.”

Complex flow streamlines generated by the flapping wing of a mosquito in flight.
Image: Johns Hopkins

Mating interruption

The research shows that “everything about mosquitoes seems perfectly adapted for accomplishing this sound-based communication.”

“Thus,” the paper states, “understanding the strategies and adaptations employed by insects such as mosquitoes to control their aeroacoustic noise could eventually provide insights into the development of quiet drones and other bioinspired micro-aerial vehicles.”

In addition to devising quieter rotors for drones, the findings will likely inform research into how sound can interrupt the mating ritual, Mittal says. That could result in non-toxic methods to disrupt breeding and diminish mosquito populations.

“We continue to pursue that side of the research,” he says. “At the right frequency the mosquitoes have a hard time flying and can’t complete their mating ritual.”

Mosquito wings: flying and flirting

With a high-frequency buzzing sound, the male mosquito attempts to connect with the low-frequency hum of a female. To do so, the team found the mosquito must flap its long, slender wings at high frequencies while also rotating them rapidly at the end of each stroke.

Yes, that annoying drill-like shrill that precedes a female’s bite is also a vibrating serenade to a male mosquito’s antennae. Unlike other flying insects their size, mosquitoes have adapted their anatomy and flight physiology to solve the “complex multifactorial problem” of trying to fly and flirt at the same time, Mittal says.

Directionality of the buzzing sound the flapping wings generate. Red regions signify maximum higher intensity. Sound directionality from mosquitoes is well suited for mate-chasing.
Image: Johns Hopkins
Have you read?

“The wing tones as well as the aerodynamic forces for flight are highly directional, and mosquitoes need to simultaneously control both for the successful completion of a mate-chase,” the paper says.

Wing tone buzz

The quick rotation of the wings “generate additional lift force” to keep them aloft, according to the research. But this same rotation also aids in directing the “wing tone” in a forward direction, which is important for chasing potential mates.

“If I’m talking to you and I turn my back, you’ll have a hard time hearing me,” Mittal explains. “They have to be able to direct their sounds properly.”

The speedy flapping and truncated range, or amplitude, is far faster and shorter than similarly-sized winged insects such as fruit flies. That’s why mosquitoes, unlike fruit flies, possess a “wing tone buzz” that is “particularly annoying to humans,” according to the paper.

The “long and slender wing is perfect for making sounds,” Mittal says. “Fruit flies, which are similar in size to mosquitoes, have short and stubby wings. Furthermore, mosquitoes are flapping at much higher frequencies than fruit flies. There is a reason for this. Higher frequencies are better at producing sounds.”

Additional coauthors are from the University of North Carolina at Chapel Hill and Johns Hopkins. The work received funding from the Human Frontier Science Program.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Emerging TechnologiesFourth Industrial RevolutionSocial Innovation
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Energy transition: Everything you need to know and live coverage from #SpecialMeeting24

Ella Yutong Lin and Kate Whiting

April 23, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum