Emerging Technologies

Parts from the ISS have been used to design a new type of prosthetic limb

Prosthetic legs are displayed at the Orthopedic Center in Donetsk, Ukraine, December 2, 2015.  REUTERS/Alexander Ermochenko - GF20000082432

Funding for the study came from the National Institutes of Health, the National Science Foundation, and the Burroughs Wellcome Fund. Image: REUTERS/Alexander Ermochenko

Nicole Casal Moore
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Emerging Technologies?
The Big Picture
Explore and monitor how Fourth Industrial Revolution is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Technological Transformation

  • A new type of prosthetic limb has been designed with materials originally designed for the International Space Station.
  • The new design has free-swinging knee and regenerative braking features meaning users have more control than with a typical prosthetic.
  • The limb is also more energy efficient, capturing and storing energy as the foot hits the ground.

A new robotic prosthetic leg prototype offers a more natural gait while also being quieter and more energy efficient than other designs, researchers report.

The key is the use of new small and powerful motors, originally designed for a robotic arm on the International Space Station.

Have you read?

The streamlined design offers a free-swinging knee and regenerative braking, which charges the battery with energy captured when the foot hits the ground. This feature enables the leg to more than double a typical prosthetic user’s walking needs with one charge per day.

Loading...

“Our prosthetic leg consumes approximately half the battery power of state-of-art robotic legs, yet can produce more force,” says Robert Gregg, an associate professor of electrical and computer engineering at the University of Michigan and a member of the university’s Robotics Institute, who led the study while at the University of Texas at Dallas.

Using conventional prosthetics, amputees must raise their hips to lift the prosthetic foot from the floor and swing the leg forward. This unnatural gait takes more energy than ordinary walking, causes extra stress and pain in the hips and lower back, and eventually damages the joints. Robotic legs have the potential to provide a much more comfortable gait, but one of their drawbacks is stiffness in the joints.

“We designed our joints to be as compliant, or flexible, as possible,” says Toby Elery, recent doctoral graduate from UT Dallas and first author of the study on the work in IEEE Transactions on Robotics.

“Our robotic leg can perform and even react like a human joint would, enabling a naturally free-swinging knee and shock absorption when contacting the ground.”

Motors in robotic legs need to fit into the space that an ordinary limb would take up. In the past, this has meant using small motors that spin quickly, and then using a series of gears to convert the fast spin into a more powerful force.

The problem is that the gears are noisy, inefficient, add weight, and make it harder for the joints to swing. Gregg’s group surmounted this by incorporating two of those stronger space station motors, one powering the knee and the other powering the ankle.

There are many benefits to using fewer gears. In addition to enabling the free-swinging knee, removing gears brought the noise level down from the scale of a vacuum cleaner to a refrigerator. Also, the regenerative braking absorbs some of the shock when the prosthetic foot hits the ground.

“If the joints are stiff or rigid, the force is transferred to the residual limb, and that can be painful,” Gregg says. “Instead, we use that force to charge the battery.”

The amputees who test drive the prosthetics in Gregg’s lab say they can feel the leg helping them push off the ground as they walk.

“In some cases, they have observed that they feel like muscles in their hips and back are working less with our leg, compared to their conventional leg,” Gregg says. “We’re able to reduce compensations at the hips.”

The team’s next step is to improve the control algorithms that can help the leg automatically adjust to different terrain, changes in pace and transitions between different types of activity.

Funding for the study came from the National Institutes of Health, the National Science Foundation, and the Burroughs Wellcome Fund.

UT Dallas and the University of Michigan are jointly pursuing patent protection. As Gregg continues his work, UM Tech Transfer is actively seeking commercial partners to help bring the technology to market.

Loading...
Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Emerging TechnologiesFourth Industrial Revolution
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Why the Global Digital Compact's focus on digital trust and security is key to the future of internet

Agustina Callegari and Daniel Dobrygowski

April 24, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum