Nature and Biodiversity

4 drivers to achieve systems-level change for sustainable futures

city interchange at night , overpass and viaducts in shanghai, illustrating sustainable futures

Can we power towards sustainable futures? Image: Shutterstock / chungking

Roger Spitz
President of Techistential (Climate & Strategic Foresight) and Chair, Disruptive Futures Institute, San Francisco
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Nature and Biodiversity?
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Climate and Nature

  • Achieving sustainable futures requires humanity to solve our most complex, systemic and existential risks.
  • If we are to address our world’s most critical challenges, our responses must be applied to high leverage points, where small interventions can result in large changes throughout the entire system.
  • Futures studies and systems thinking are instrumental to anticipating, identifying and harnessing effective levers to enable widespread change across complex systems.

The world’s most critical challenges are complex covering the climate, society and emerging technologies. Addressing these requires systemic change, not isolated solutions. To achieve systemic change, organizations must consider a broad set of stakeholders, partners and complex ecosystem interactions. If solutions aren’t systemic, we all lose.

Achieving sustainable futures requires humanity to solve our most complex, systemic and existential risks.

Achieving sustainable futures requires humanity to solve our most complex, systemic and existential risks. This demands a deeper understanding of systems-level change - deeper than discrete surface-level point solutions.

Drawing on futures' studies, there are four related mindsets and actions that can lead to systems-level transformative change:

1. Strategic foresight for adaptive and resilient futures

2. Virtuous inflexion points

3. Transformational innovation versus point solutions

4. Levers for effective systemic change

systems level change for sustainable futures

Our strategic foresight work at Techistential is informed by real-world use cases that illustrate systems-level change for sustainable futures.

1. Strategic foresight for adaptive and resilient futures

Environmental initiatives often focus on mitigation, which is insufficient without also preparing for change through climate adaptation. Foresight supports adaptation strategies by adjusting systems in anticipation of evolving environments. Such foresight informs climate-aligned decision-making in advance of many climate eventualities (versus responding after the fact).

Every person, asset and business is exposed to climate risk, including critical infrastructure, homes, commercial buildings and hotels. These risks threaten the livelihood of hundreds of millions of people - and trillions of dollars in physical assets.

By combining strategic foresight with climate intelligence, anticipatory decision-makers can develop adaptive resilience for business models, assets, property and supply chains by integrating the possible next-order implications of interconnected shocks.

There are many startups operating in climate intelligence, including ClimateAI, Jupiter Intelligence and Mitiga Solutions. These organizations enable climate-aligned decisions to identify emerging opportunities while building resilient adaptation to absorb shocks - instead of just mitigating the ultimate risks.

Have you read?

2. Virtuous inflexion points to achieve critical mass

Understanding what triggers beneficial tipping points in the adoption of sustainable system innovations can offer us pathways for supporting the energy transition.

Inflexion points arise when small changes interact and enable the emergence of watershed changes that replace past paradigms. The initial stages of new initiatives can seem slow, but change is often slow… until it isn’t. Combinatory technologies and self-reinforcing collective actions can significantly boost the adoption of low-carbon solutions, eventually reaching a virtuous inflexion point.

The US Inflation Reduction Act, for example, provides hundreds of billions of dollars to support clean energy tax breaks, manufacturing and research and development. This type of unprecedented funding signals that we could be approaching a virtuous inflexion point for structural transformations to deliver on environmental responsibilities.

Additionally, consider electrification. The more electric vehicles produced, the cheaper production becomes, as automakers travel up the innovation learning curve. By banning gasoline cars in multiple jurisdictions, policymakers contribute to a virtuous tipping point for the automotive sector, eventually reaching a world where electric vehicles may be cheaper than petrol cars.

Discover

What's the World Economic Forum doing about the transition to clean energy?

There are headwinds on the pathways to achieving positive inflexion points, including the reversal of climate commitments and unproven technologies. However, many green technologies are maturing to achieve broad adoption. If the system innovations accelerate as they combine with effective policy targets, changemakers can leave legacy players marginalized.

3. Transformational innovation versus point solutions

green tech critical challenge

NASA’s Technology Readiness Level (TRL) quantifies the maturity of a technology’s development from one to nine. The higher a technology ranks, the more technically developed it is.

For new technologies, surviving the so-called 'valleys of death' is a requirement for reaching scale. Traditionally, the term has referred to the 'technological valley of death,' where a new innovation faces significant challenges in moving from the lab to a working prototype. The term has expanded, however, to capture other high-risk stages when funding is most critical - and when it’s most difficult to secure.

The 'commercialization valley of death' is in between the phases of demonstration and commercialization - when technologies are proven but require more capital to scale. This valley is a particularly difficult challenge for green tech, which must effect change in a dynamic, complex, real-world environment to prove its worth to investors.

Furthermore, unlike many consumer or enterprise applications, transformational green technologies often combine software and hardware (e.g. energy storage, green hydrogen and carbon capture). These typically require public policy alignment, emerging ecosystems, and new infrastructure, which carries costly, longer-term and riskier initial capital.

Having the foresight to integrate, deploy and scale cost-effectively throughout complex environments is key to achieving transformational innovation.

4. Levers for effective systemic change

In Leverage Points: Places to Intervene in a System, environmental scientist Donella Meadows outlines how to use systems thinking to identify root problems and effect change in our complex, systemic world. Meadows teaches that applying shifts at the appropriate levels is the most effective way to trigger change.

leverage points for effective change

If we are to address our world’s most critical challenges, our responses need to be applied to high leverage points, where small interventions can result in large changes throughout the entire system:

Surface-level interventions offer the lowest leverage as they are less integrated in the system. These include net-zero commitments that are decades away, often devoid of enablers for systemic transformational change.

By monitoring patterns and trends over time, responses can be evaluated via feedback loops and changes achieved.

Structures produce adverse behaviours, such as ineffective (even counter-productive) incentivization. Altering structures can establish what change actually arises. Aligning policymaking is possible with the right standards, bans, subsidies and green infrastructure investments.

Mental models or the world views that sustain our beliefs, values or assumptions are the highest leverage points to drive systems change, but also the most difficult to achieve. True education begins on the playground but is equally important in the boardroom. This is the basis for certain schools mandating a climate change curriculum.

Futures studies and systems thinking are instrumental to anticipating, identifying and harnessing effective levers to enable widespread change across complex systems.

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

World breaches critical 1.5°C warming threshold 12 months in a row, and other nature and climate stories you need to read this week

Tom Crowfoot

July 17, 2024

About Us

Events

Media

Partners & Members

  • Sign in
  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum