Social Innovation

Emerging Tech 2015: Next generation robotics

Bernard Meyerson
Chief Innovation Officer, IBM
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Social Innovation?
The Big Picture
Explore and monitor how Social Innovation is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Social Innovation

The popular imagination has long foreseen a world where robots take over all manner of everyday tasks. This robotic future has stubbornly refused to materialize, however, with robots still limited to factory assembly lines and other controlled tasks. Although heavily used (in the automotive industry, for instance) these robots are large and dangerous to human co-workers; they have to be separated by safety cages.

Advances in robotics technology are making human-machine collaboration an everyday reality. Better and cheaper sensors make a robot more able to understand and respond to its environment. Robot bodies are becoming more adaptive and flexible, with designers taking inspiration from the extraordinary flexibility and dexterity of complex biological structures, such as the human hand. And robots are becoming more connected, benefiting from the cloud-computing revolution by being able to access instructions and information remotely, rather than having to be programmed as a fully autonomous unit.

The new age of robotics takes these machines away from the big manufacturing assembly lines, and into a wide variety of tasks. Using GPS technology, just like smartphones, robots are beginning to be used in precision agriculture for weed control and harvesting. In Japan, robots are being trialled in nursing roles: they help patients out of bed and support stroke victims in regaining control of their limbs. Smaller and more dextrous robots, such as Dexter Bot, Baxter and LBR iiwa, are designed to be easily programmable and to handle manufacturing tasks that are laborious or uncomfortable for human workers.

Indeed, robots are ideal for tasks that are too repetitive or dangerous for humans to undertake, and can work 24 hours a day at a lower cost than human workers. In reality, new-generation robotic machines are likely to collaborate with humans rather than replace them. Even considering advances in design and artificial intelligence, human involvement and oversight will remain essential.

20150302-ET10-NGR-Eng-01

There remains the risk that robots may displace human workers from jobs, although previous generations of automation have tended to lead to higher productivity and growth with benefits throughout the economy. Decades-old fears of networked robots running out of control may become more salient with next generation robotics linked into the web – but more likely familiarisation as people employ domestic robots to do household chores will reduce fears rather than fan them. And new research into social robots – that know how to collaborate and build working alliances with humans – means that a future where robots and humans work together, each to do what it does best – is a strong likelihood. Nevertheless, however, the next generation of robotics poses novel questions for fields from philosophy to anthropology about the human relationship to machines.

Discover the other emerging technologies on the 2015 list:
Sense and avoid drones
Distributed manufacturing
Digital genome
Additive manufacturing
Computer chips that mimic the human brain
Zero-emission cars
Computers that learn on the job
Precise genetic engineering
A new kind of plastic to cut landfill waste

This list was compiled by the Meta-Council on Emerging Technologies, who would like to thank: Justine Cassell, Professor, Human-Computer Interaction, Carnegie Mellon University; Paolo Dario, Director, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa; Julia Greer, Professor of Materials Science and Mechanics, California Institute of Technology (Caltech); and Jennifer Lewis, Hansjorg Wyss Professor at the Harvard School of Engineering and Applied Sciences, from theNetwork of Global Agenda Councils; Michael Pellini, President and Chief Executive Officer, Foundation Medicine Inc., from the Technology Pioneers; and William “Red” Whittaker, Professor at Carnegie Mellon University, for their invaluable contributions to the creation of this list.

Image: The hand of humanoid robot AILA (artificial intelligence lightweight android) operates a switchboard during a demonstration by the German research centre for artificial intelligence at the CeBit computer fair in Hanover March, 5, 2013. REUTERS/Fabrizio Bensch 

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Social InnovationEmerging TechnologiesArtificial Intelligence
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

How social innovation education can help solve the world's most pressing problems

Rahmin Bender-Salazar and Roisin Lyons

January 19, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum