Electricity

Generating electricity by taking a leaf out of nature's book

The sun rises behind windmills at a wind farm in Palm Springs, California, February 9, 2011. REUTERS/Lucy Nicholson (UNITED STATES - Tags: ENERGY ENVIRONMENT BUSINESS) - RTXXNCW

Electricity could be generated from an unlikely source. Image: REUTERS/Lucy Nicholson

Fred Love
Writer, Futurity
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Electricity?
The Big Picture
Explore and monitor how Electricity is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Electricity

A new device mimics the branches and leaves of a cottonwood tree and generates electricity when its artificial leaves sway in the wind.

The concept won’t replace wind turbines, but the technology could spawn a niche market for small and visually unobtrusive machines that turn wind into electricity, says Michael McCloskey, an associate professor of genetics, development, and cell biology at Iowa State University who led the design of the device.

“The possible advantages here are aesthetics and its smaller scale, which may allow off-grid energy harvesting,” McCloskey says. “We set out to answer the question of whether you can get useful amounts of electrical power out of something that looks like a plant. The answer is ‘possibly,’ but the idea will require further development.”

McCloskey says cell phone towers in some urban locations, such as Las Vegas, have been camouflaged as trees, complete with leaves that serve only to improve the tower’s aesthetic appeal. Tapping energy from those leaves would increase their functionality, he says.

 Image 1
Image: Christopher Gannon

The paper in PLOS ONE reports an example of biomimetics, or the use of artificial means to mimic natural processes. The concept has inspired new ways of approaching fields as varied as computer science, manufacturing, and nanotechnology.

It’s unlikely that many people would mistake the prototype in McCloskey’s laboratory for a real tree. The device features a metallic trellis, from which hang a dozen plastic flaps in the shape of cottonwood leaves.

Curtis Mosher, an associate scientist at Iowa State and coauthor of the paper, says it’s not that great of a leap from the prototype the researchers built to a much more convincing artificial tree with tens of thousands of leaves, each producing electricity derived from wind power.

“It’s definitely doable, but the trick is accomplishing it without compromising efficiency,” Mosher says. “More work is necessary, but there are paths available.”

Small strips of specialized plastic inside the leaf stalks release an electrical charge when bent by moving air. Such processes are known as piezoelectric effects. Cottonwood leaves were modeled because their flattened leaf stalks compel blades to oscillate in a regular pattern that optimizes energy generation by flexible piezoelectric strips.

Eric Henderson, a professor of genetics, development, and cell biology who also works on the research team, envisions a future in which biomimetic trees help to power household appliances.

Such biomimetic technology could become a market for those who want the ability to generate limited amounts of wind energy without the need for tall and obstructive towers or turbines, Henderson says.

But McCloskey says making that vision reality means finding an alternative means of mechanical-to-electrical transduction, or a scheme for converting wind energy into usable electricity. The piezo method adopted for the ISU experiments didn’t achieve the efficiency the technology will need to compete in the market.

Piezoelectricity was an obvious place to start because the materials are widely available, Henderson says. But taking the next step will require a new approach.

Other transduction methods such as triboelectricity, or the generation of charge by friction between dissimilar materials, work at similar efficiency and can power autonomous sensors. However, McCloskey says it will require much greater efficiency—and further research—to produce a practical device.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
ElectricityEnergy TransitionFuture of the Environment
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Industrial electrification is a joint venture: why collaboration across sectors is key

Francisco Laverón, Randolph Brazier, Natalia Zabolotnikova and Xabier Mugarza Zorriqueta

March 26, 2024

1:41

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum