Fourth Industrial Revolution

Technology is making these rare elements among the most valuable on Earth

Gold granulate is seen at a plant of gold refiner and bar manufacturer Valcambi SA in the southern Swiss town of Balerna December 20, 2012. Picture taken December 20, 2012. To match story SWISS-GOLD/ REUTERS/Michael Buholzer (SWITZERLAND - Tags: BUSINESS)

From a gold rush to a gallium rush. Image: REUTERS/Michael Buholzer

Hywel Jones
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Fourth Industrial Revolution?
The Big Picture
Explore and monitor how Fourth Industrial Revolution is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Fourth Industrial Revolution

What’s in your stuff? Most of us give no thought to the materials that make modern life possible. Yet technologies such as smart phones, electric vehicles, large screen TVs and green energy generation depend on a range of chemical elements that most people have never heard of. Until the late 20th century, many were regarded as mere curiosities – but now they are essential. In fact, a mobile phone contains over a third of the elements in the periodic table.

Image: What's In My Stuff

As more people want access to these technologies, the demand for the critical elements is growing. But supply is subject to a range of political, economic and geological factors, creating volatile prices as well as large potential gains. This makes investment in mining these metals a risky business. Below are just a few examples of the elements we have come to rely on that have seen sharp price rises (and some falls) in the last few years.

Cobalt

Cobalt has been used for centuries to create stunning blue glass and ceramic glazes. Today it is a critical component in superalloys for modern jet engines, and the batteries that power our phones and electric cars. Demand for these vehicles has increased rapidly in the last few years, with worldwide registrations more than tripling from 200,000 in 2013 to 750,000 in 2016. Smartphone sales have also risen – to more than 1.5 billion in 2017 – although the first ever dip at the end of year perhaps indicates that some markets are now saturated.

Alongside demand from traditional industries, this helped drive up cobalt prices from £15 a kilogram to nearly £70 a kilogram in the last three years. Africa has historically been the largest source of cobalt minerals but rising demand and concerns about supply security mean new mines are opening in other regions such as the US. But in an illustration of the market’s volatility, increased production has caused prices to crash by 30% in recent months.

Rare earth elements

The “rare earths” are a group of 17 elements. Despite their name, we now know that they are not that scarce, and they are most commonly obtained as a byproduct of the large-scale mining of iron, titanium or even uranium. In recent years, their production has been dominated by China, which has provided over 95% of global supply.

Rare earths are used in electric vehicles and wind turbines, where two of the elements, neodymium and praseodymium, are critical for making the powerful magnets in electric motors and generators. Such magnets are also found in all phone speakers and microphones.

The prices for the different rare earths vary and fluctuate significantly. For example, driven by growth in electric vehicles and wind power, neodymium oxide prices peaked in late 2017 at £93 a kilogram, twice the mid-2016 price, before falling back to levels around 40% higher than 2016. Such volatility and insecurity of supply means more countries are looking to find their own sources of rare earths or to diversify their supply away from China.

Gallium

Gallium is a strange element. In its metallic form, it can melt on a hot day (above 30°C). But when combined with arsenic to make gallium arsenide, it creates a powerful high speed semiconductor used in the micro-electronics that make our phones so smart. With nitrogen (gallium nitride), it is used in low-energy lighting (LEDs) with the right colour (LEDs used to be just red or green before gallium nitride). Again, gallium is mainly produced as a byproduct of other metal mining, mostly for iron and zinc, but unlike those metals its pricehas more than doubled since 2016 to £315 a kilogram in May 2018.

Indium

Indium is one of the rarer metallic elements on earth yet you probably look at some everyday as all flat and touch screens rely on a very thin layer of indium tin oxide. The element is obtained mostly as a byproduct of zinc mining and you might only get one gram of indium from 1,000 tonnes of ore.

Despite its rarity, it is still an essential part of electronic devices because there are currently no viable alternatives for creating touch screens. However, scientists hope the two-dimensional form of carbon known as graphene may provide a solution. After a major dip in 2015, the price has now risen by 50% on 2016-17 levels to around £350 a kilogram, driven mainly by its use in flat screens.

Tungsten

Tungsten is one of the heaviest elements, twice as dense as steel. We used to rely on it to light our homes, when old-style incandescent lightbulbs used a thin tungsten filament. But even though low-energy lighting solutions have all but eliminated tungsten lightbulbs, most of us will still use tungsten every day. Along with cobalt and neodymium, it’s what makes our phones vibrate. All three elements are used in the small but heavy mass that is spun by a motor inside our phones in order to create vibrations.

Tungsten combined with carbon also creates an extremely hard ceramic for cutting tools used in the machining of metal components in the aerospace, defence and automotive industries. It is used in wear-resistant parts in oil and gas extraction, mining and tunnel boring machines. Tungsten also goes in to making high performance steels.

Tungsten ore is one of the few minerals that are being newly mined in the UK, with a dormant tungsten-tin ore mine near Plymouth reopening in 2014. The mine has struggled financially due to the volatile global ore prices. Prices dropped from 2014 to 2016 but have since recovered to early 2014 values giving some hope for the future of the mine.

Have you read?
Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Fourth Industrial RevolutionChemical and Advanced Materials
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Space: The $1.8 Trillion Opportunity for Global Economic Growth

Bart Valkhof and Omar Adi

February 16, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum