Education and Skills

This Nobel Prize winner reveals the most important thing scientists need to make discoveries

Nobel Prize in Physics laureate Donna Strickland speaks during her Nobel Lecture "Generating High-Intensity Ultrashort Optical Pulses" at the Aula Magna, Stockholm University, in Stockholm, Sweden December 8, 2018. TT News Agency/Christine Olsson/via REUTERS      ATTENTION EDITORS - THIS IMAGE WAS PROVIDED BY A THIRD PARTY. SWEDEN OUT. NO COMMERCIAL OR EDITORIAL SALES IN SWEDEN. - RC1DDD1744F0

We must give scientists the opportunity through funding and time. Image: REUTERS

Donna Strickland
Professor, Department of Physics and Astronomy, University of Waterloo
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Education and Skills?
The Big Picture
Explore and monitor how Innovation is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Innovation

Since the announcement that I won the Nobel Prize in physics for chirped pulse amplification, or CPA, there has been a lot of attention on its practical applications.

It is understandable that people want to know how it affects them. But as a scientist, I would hope society would be equally interested in fundamental science. After all, you can’t have the applications without the curiosity-driven research behind it. Learning more about science — science for science’s sake — is worth supporting.

Gérard Mourou, my co-recipient of the Nobel Prize, and I developed CPA in the mid-1980s. It all started when he wondered if we could increase laser intensity by orders of magnitude — or by factors of a thousand. He was my doctoral supervisor at the University of Rochester back then. Mourou suggested stretching an ultrashort pulse of light of low energy, amplifying it and then compressing it. As the graduate student, I had to handle the details.

A goal to revolutionize laser physics

The goal was to revolutionize the field of high-intensity laser physics, a fundamental area of science. We wanted the laser to show us how high-intensity light changes matter, and how matter affects light in this interaction.

Donna Strickland, an associate professor at the University of Waterloo, is photographed in her lab following a news conference, after winning the Nobel Prize for Physics, at the university in Waterloo, Ontario, Canada October 2, 2018.  REUTERS/Peter Power - RC15F12FB640
Donna Strickland in her lab. Image: REUTERS/Peter Power

It took me a year to build the laser. We proved that we could increase laser intensity by orders of magnitude. In fact, CPA led to the most intense laser pulses ever recorded. Our findings changed the world’s understanding of how atoms interact with high-intensity light.

It was about a decade before practical uses common today eventually came into view.

Have you read?

Many practical applications

Because the high-intensity pulses are short, the laser only damages the area where it’s applied. The result is precise, clean cuts that are ideal for transparent materials. A surgeon can use CPA to slice a patient’s cornea during laser eye surgery. It cleanly cuts the glass parts in our cell phones.

Scientists are taking what we know about high-intensity lasers and are working on a way to use the most intense CPA lasers to accelerate protons.

Hopefully, one day these accelerated particles will help surgeons remove brain tumors that they can’t today. In the future, CPA lasers might remove space junk by pushing it out of our orbit and to the Earth’s atmosphere, where it will burn up and not collide with active satellites.

In many cases, the practical applications lag several years or even decades behind the original findings.

Albert Einstein created the equations for the laser in 1917, but wasn’t until 1960 that Theodore Maiman first demonstrated the laser. Isidor Rabi first measured nuclear magnetic resonance in 1938. He received the Nobel Prize for Physics in 1944 for his research, which led to the invention of magnetic resonance imaging, or MRI. The first MRI exam on a human patient took place in 1977.

Loading...

Certainly, applications deserve a lot of attention. Before you can get to them though, researchers first have to understand the basic questions behind them.

The term fundamental science may give some the false impression that it doesn’t really affect their lives because it seems far removed from anything relatable to them. What’s more, the term basic has the non-scientific definition of simple that undermines its importance in the context of basic science.

We must give scientists the opportunity through funding and time to pursue curiosity-based, long-term, basic-science research. Work that does not have direct ramifications for industry or our economy is also worthy. There’s no telling what can come from supporting a curious mind trying to discover something new.

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Why we need global minimum quality standards in EdTech

Natalia Kucirkova

April 17, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum