Emerging Technologies

Can big data help us to predict medical conditions?

Peter Dizikes
Writer, MIT News Office

What can big data tell us about the predictability of medical conditions? A new study by MIT researchers published in the journal Scientific Reports digs into this question by looking at anonymous data from over 500,000 patients. Among the findings is that our electronic medical records contain data that is up to 90 percent predictable — although this level of predictability is only attainable in theory. However, it can guide algorithmic designers and practitioners on what is possible in principle. The co-authors of the paper are Carlo Ratti, director of MIT’s Senseable City Laboratory, and two former computer science researchers at the lab, Dominik Dahlem (who is the lead author) and Diego Maniloff. The data originated with General Electric, which collaborated with Senseable City on a 2011 project on visually plotting health care data. MIT News spoke with Ratti about the new study.

Q. What is your central finding in the new study?

A. The results are quite interesting: This is one of the first analyses of large data you get from using electronic health records, and it just became available. This is a big amount of data we got from General Electric. What we tried to look at is, when you go to see the doctor, you’ve got a certain [medical] history, and you’re perhaps looking at a [medical] problem. When you look at that problem, is there any predictive power in the history that comes before? We looked at that from a pure computer science point of view — and it turns out there is predictive power.

Q. In the paper, you state that “shuffling individual disease histories only marginally degrades the predictability bounds.” That is, certain diseases correlate with each other largely apart of the order in which they occur, is that right?

A. You might want to reshuffle it [a patient’s history] over time, to see how the predictability changes. And what we found was that you can predict even if you shuffle. Which in a certain sense tells you there are a series of diseases that occur together. … They are not necessarily developing in a strict order, but it’s about a cluster of things that come together.

At the level of the individual, this allows you to compare the medical history to other people, and give additional information to the doctor. Doctors can get additional input from this analysis of the medical history. Of course this is what doctors already do — they look at the past in order to understand what might be the problem. But it’s a mathematical way that guides you, gives you more [than] than you might get by going through [one patient’s medical history].

Q. Your lab has a focus on applying data to urban issues. So what was the genesis of this research project on health care?

A. Our focus is looking at how information is changing our knowledge of cities. And information from medical records is a very important type of information we can use. The question came about, can we actually look at these time sequences and try to understand — from just an information-theory point of view, can we actually predict — what comes next?

That is one of the things we have started doing with the data, looking at the data over space, and yes, we can see differences between different regions. And really you start understanding that interplay, about the individual, and quantifying the environment around ourselves … and that then becomes something that leaves a signature in medical records. In some sense, looking at medical records and the environment in certain regions becomes very important.

The authors were partially funded by General Electric, the AT&T Foundation, the National Science Foundation, the National Defense Science and Engineering Fellowship Program, and Audi Volkswagen.

This article is published in collaboration with MIT News. Publication does not imply endorsement of views by the World Economic Forum.

To keep up with the Agenda subscribe to our weekly newsletter.

Author: Peter Dizikes is a contributing writer for MIT News.

Image: Registered Nurse Rebecca Moak poses for a photo in trauma center of the University of Mississippi Medical Center in Jackson, Mississippi October 4, 2013. REUTERS/Jonathan Bachman.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Future of Global Health and Healthcare

Share:
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

More on Emerging Technologies
See all

Equitable AI skilling can help solve talent scarcity – this is what leaders can do

Sander van 't Noordende

December 5, 2024

Closing the AI equity gap: Trust and safety for sustainable development

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum