Fourth Industrial Revolution

Could we adjust brain cells to reduce brain injury and disease?

A woman walks past a display of a brain slice of patient “H.M.” at the press preview for the MIT 150 Exhibition at the MIT Museum, celebrating Massachusetts Institute of Technology’s 150 year anniversary, in Cambridge, Massachusetts January 7, 2011

Scientists may have found a way to restore lost brain function Image: REUTERS/Brian Snyder

Julie Robert

Astrocytes are star-shaped cells in our brain that surround neurons and neural circuits, protecting them from injury and enabling them to function properly. In essence, one of their main roles is to “baby-sit” neurons.

It’s not been clear what mechanisms create and maintain differences among astrocytes, and allow them to fulfill specialized roles. But recently a team at McGill University discovered a dial-like structure on astrocytes that enables neurons to adjust astrocytes and ensure they provide the right kind of support.

“This ‘dial’ is likely used to tune the astrocyte’s response in the normal brain but also in different diseases like Alzheimer’s or Parkinson’s or injuries such as stroke or trauma, for example,” explains Todd Farmer, the study’s first author and a postdoctoral fellow at the McGill University Health Centre. “Our findings help us to better understand the complexity of the brain and also grasp mechanisms that can be used to reduce brain injury and disease.”

The findings appear in Science.

“It was believed that astrocytes acquired their properties during the development of the brain and then they were hardwired in their roles,” says Keith Murai, an associate professor in the neurology and neurosurgery department at McGill University and the study’s senior author. “We have now discovered that astrocytes are actually incredibly flexible and potentially modifiable, which enables them to improve brain function or restore lost potential caused by disease.”

Murai and his colleagues conducted most of their experiments on mouse models and studied a specific pathway called the Sonic Hedgehog (SHH) signaling pathway, which is well known in brain development and cancer. By using a combination of advanced genetics, molecular approaches, and microscopy techniques they found that this signaling pathway is used in the adult brain in a completely novel way. They found the SHH pathway induced disparate changes in astrocytes in different brain regions.

“This is an extraordinary mechanism in the healthy, mature brain that creates diversity of brain cells,” says Murai. “Now, our goal is to see how this mechanism is affected in different brain diseases and determine if it can be harnessed to protect neurons and ultimately preserve brain function.”

The Canadian Institutes of Health Research, Brain Canada Foundation, and the Weston Brain Institute funded the study.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Stay up to date:

Neuroscience

Share:
The Big Picture
Explore and monitor how Neuroscience is affecting economies, industries and global issues
World Economic Forum logo

Forum Stories newsletter

Bringing you weekly curated insights and analysis on the global issues that matter.

Subscribe today

Accelerating transformation in manufacturing, from the factory floor to the boardroom

Markus Kirchschlager and Benedikt Gieger

July 10, 2025

2:36

More Americans are turning to social media than TV and 6 other news trends

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2025 World Economic Forum