Health and Healthcare Systems

This bacteria could make sunscreen more environmentally friendly

A man is sprayed with sunscreen at the Coachella Valley Music and Arts Festival in Indio, California April 11, 2015. REUTERS/Lucy Nicholson

Scientists have found a bacteria in algae that could protect our skin from UV rays. Image: REUTERS/Lucy Nicholson

University of Florida
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Health and Healthcare Systems?
The Big Picture
Explore and monitor how Global Health is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Global Health

There’s a new way to harvest a key ingredient responsible for making sunscreen more environmentally friendly.

By pushing the discovery to commercialization, researchers hope to make “green” sunscreens more available, reducing dependence on oxybenzone- and octinoxate-based sunscreens. These harmful chemicals accumulate in aquatic environments; they’re toxic to marine life and potentially disrupt the human reproductive system.

The researchers found a more efficient way to harvest the UV-absorbing amino acid known as shinorine, which marine organisms like cyanobacteria and macroalgae produce. The conventional method extracts shinorine from red algae, which takes as long as a year to grow and has a long processing time.

The new method reduces harvesting time to less than two weeks. Principal investigator Yousong Ding, an assistant professor of medicinal chemistry at the University of Florida College of Pharmacy, and his colleagues have brought production out of the wild and into the laboratory, where they have much more control.

Researchers selected a strain of freshwater cyanobacteria, Synechocystis, as a host cell for shinorine expression because it grows quickly, and it’s easy for scientists to modify its genes. Next, they mined the genes responsible for the synthesis of shinorine from a native producer, the filamentous cyanobacterium Fischerella.

The researchers inserted these genes into Synechocystis. Using this method, they produced 2.37 milligrams of shinorine per gram of cyanobacteria, which is comparable to the conventional method’s yield.

“This is the first time anyone has demonstrated the ability to photosynthetically overproduce shinorine,” Ding says.

The production method researchers discovered has broader applications for the production of other known cyanobacterial products and could expedite the process of turning cyanobacterial genomes into potential new drugs.

Have you read?

Researchers secondarily confirmed that the shinorine they harvested through the new method protects cells from UV rays.

To test this, they exposed shinorine-making cells to UV radiation. Control cells that do not produce shinorine experienced an obvious decline in population from UV-B exposure. In the other cells, shinorine acted as sunscreen against UV-B light, which helped the cells live and grow better.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Health and Healthcare SystemsNature and Biodiversity
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Funding the future: Sustainable financing models to help the fight against antimicrobial resistance

Shyam Bishen

October 10, 2024

About us

Engage with us

  • Sign in
  • Partner with us
  • Become a member
  • Sign up for our press releases
  • Subscribe to our newsletters
  • Contact us

Quick links

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum