Fourth Industrial Revolution

AI could give us more accurate weather forecasts

Members of the Emergency Operations Committee (COE) monitor the trayectory of Tropical Storm Erika via satellite in Santo Domingo, August 28, 2015. Tropical Storm Erika threatened Haiti and the Dominican Republic with heavy rain and strong winds on Friday as it swirled across the Caribbean and geared up for a run at South Florida, the U.S. National Hurricane Center said. Due to some likely weakening over mountainous areas, Erika was no longer forecast to make U.S. landfall as a hurricane. REUTERS/Ricardo Rojas    - GF10000185479

Some areas experience more rapid changing weather than others. Image: REUTERS/Ricardo Rojas

Matthew Swayne
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Fourth Industrial Revolution?
The Big Picture
Explore and monitor how Fourth Industrial Revolution is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Fourth Industrial Revolution

Artificial intelligence that pinpoints swift-changing weather areas could result in more accurate weather forecasts.

The weather changes much faster and more violently in some geographic areas than others, which can mean that current weather prediction models may be slow and inefficient.

In a new study, the researchers used an AI model based on natural selection to find areas of the continental United States where temperature changes are harder to predict and variable, so that computational resources can focus there.

The resulting temperature prediction algorithm was equal to or better than the current model, but used less computational power.

Better short-term weather forecasts

The work could lead to a solution to developing more accurate short-term forecasts, one of meteorology’s trickiest problems, says Guido Cervone, a professor of geography, meteorology, and atmospheric science at Penn State associate director of the Institute for CyberScience.

“Our methodology helps focus the available computational resources toward areas that are harder to predict, which in turn should help generate better short-term forecasts,” says Cervone. “Numerical weather prediction is one of the most computationally demanding problems, and its use for society is far-reaching.”

Weiming Hu, a doctoral student in geography, says that the current weather maps are divided up into a simple mesh of about 200,000 grid points in the United States. When weather forecasters use computers to analyze weather patterns in those areas, the computational power is spread equally among those grid points, which each represent about 11 kilometers [7 miles] in diameter. While that might sound like common sense, Hu says the map does not reflect the computational reality of weather prediction. Topography, elevation, the proximity of water, and myriad other factors can disrupt weather patterns, making certain areas much more difficult to predict.

“If you think about Iowa, let’s say, it rarely experiences huge changes in the weather regimes across dozens of kilometers, compared to some other places, because the topography is relatively simple and you can use some very easy interpolation—or estimates—to give you some good ideas about, in this case, what the temperature will be in the future,” says Hu.

“But, in the Rocky Mountains, you can go from the plains to the peak of a mountain in just a few kilometers and that changes things dramatically when you’re trying to predict weather regimes. What we want to address is how can we figure out what are the more important or more interesting areas where we need either to have a higher resolution or a more accurate weather prediction for that specific region.”

Have you read?

Using genetic algorithms

The researchers used genetic algorithms to help create a more flexible mesh to focus computational analysis on grids with complex, rapidly changing weather patterns. They can expand mesh in other areas of the country, where the weather is steadier.

Hu says genetic algorithm programs are a machine learning model that is loosely based on biological evolution. In biological evolution, only a few individuals will survive in a certain environment out of the thousands that attempted to live there. Similarly, in genetic programming, hundreds or thousands of potential solutions will be tested to superior ones, such as, in this case, locations in need of a finer mesh grid.

Hu adds that genetic algorithms are designed to offer good solutions, rather than perfect ones.

“Genetic algorithms do not guarantee the best solution, but they do guarantee finding better solutions faster,” says Hu. “In a case like predicting temperature changes you might not care about finding the ultimate solution because it might be the difference between 29.56 degrees and 29.55 degrees. That’s probably not going to matter for the regular person.”

While the researchers’ study looked specifically at temperature change, Hu says that in the future researchers could test the model on other weather conditions, such as precipitation and cloud cover.

The findings appear in the Journal of Computers and Geosciences. The National Science Foundation supported this work.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Fourth Industrial RevolutionEmerging TechnologiesFuture of the Environment
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Space: The $1.8 Trillion Opportunity for Global Economic Growth

Bart Valkhof and Omar Adi

February 16, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum