Health and Healthcare Systems

This new method can create vascular stents that are 40 times smaller than previously possible

A 3D printer prints what Israeli scientists from Tel Aviv University say is the world’s first 3D-printed, vascularised engineered heart, during a demonstration at a laboratory in the university, Tel Aviv, Israel April 15, 2019. REUTERS/Amir Cohen - RC13FA2CB9D0

Millions of children worldwide develop urethral strictures which could one day be treated with these microstructures. Image: REUTERS/Amir Cohen

ETH Zurich
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Health and Healthcare Systems?
The Big Picture
Explore and monitor how 3D Printing is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

3D Printing

A new method for making malleable microstructures can produce vascular stents that are 40 times smaller than previously possible, researchers report.

In the future, these kinds of small stents could help to widen life-threatening constrictions of the urinary tract in fetuses in the womb.

Approximately one in every thousand children develops a urethral stricture, sometimes even when they are still a fetus in the womb.

To prevent life-threatening levels of urine from accumulating in the bladder, pediatric surgeons have to surgically remove the affected section of the urethra and sew the open ends of the tube back together again. It would be less damaging to the kidneys, however, if they could insert a stent to widen the constriction while the fetus is still in the womb.

Stents have been used to treat blocked coronary vessels for some time now, but the urinary tract in fetuses is much narrower in comparison. It’s not possible to produce stents with such small dimensions using conventional methods, which is why Gaston De Bernardis of the Kantonsspital Aarau approached researchers at the Multi-Scale Robotics Lab at ETH Zurich. The lab’s researchers have now developed a new method that allows them to produce highly detailed structures measuring less than 100 micrometers in diameter.

Have you read?

“We’ve printed the world’s smallest stent with features that are 40 times smaller than any produced to date,” says lead author Carmela De Marco, a fellow in Bradley Nelson’s research group at ETH.

The group calls their method indirect 4D printing. They use heat from a laser beam to cut a three-dimensional template—a 3D negative—into a micromold layer that a solvent can dissolve. Next, they fill the negative with a shape-memory polymer and set the structure using UV light. In the final step, they dissolve the template in a solvent bath and the three-dimensional stent is finished.

It’s the stent’s shape-memory properties that give it its fourth dimension. Even if the material is deformed, it remembers its original shape and returns to this shape when warm.

“The shape-memory polymer is suitable for treating urethral strictures. When compressed, the stent can be pushed through the affected area. Then, once in place, it returns to its original shape and widens the constricted area of the urinary tract,” De Bernardis says.

But the stents are still a long way from finding real-world application. Before scientists can conduct human studies to show whether they are suitable for helping children with congenital urinary tract defects, they must first test the stents in animal models.

However the initial findings are promising, “We firmly believe that our results can open the door to the development of new tools for minimally invasive surgery,” De Marco says.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Bird flu spread a ‘great concern’, plus other top health stories

Shyam Bishen

April 24, 2024

2:12

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum