Health and Healthcare Systems

The original Sars virus disappeared – here’s why coronavirus won’t do the same

A passenger covered with a plastic bag is seen at Luton Airport, following the outbreak of the coronavirus disease (COVID-19), Luton, Britain, June 4, 2020. REUTERS/Paul Childs     TPX IMAGES OF THE DAY - RC2B2H93QR0M

What would life without a vaccine look like? Image: REUTERS/Paul Childs

Connor Bamford
Post-doctoral Research Assistant, University of Glasgow
Our Impact
What's the World Economic Forum doing to accelerate action on Health and Healthcare Systems?
The Big Picture
Explore and monitor how COVID-19 is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:


  • Connor Bamford, a research fellow in Virology at Queen's University Belfast, challenges the view that COVID-19 could burn itself out in the UK.
  • He compares the virus to that of the Sars outbreak, and explores the likelihood of the British public gaining natural herd immunity from COVID-19.
  • The best option is to continue to suppress the virus, until a safe vaccine is widely available, he concludes.

British cancer doctor Prof Karol Sikora recently claimed that the current COVID-19 pandemic would “burn itself out”. His thinking is that if there are more infections than we realise, and that those milder, unrecorded infections result in robust immunity, then this would quickly lead to “herd immunity”, leaving the virus nowhere to go but extinct. Extend this to the world’s population and the virus eradicates itself.

Have you read?

But the idea that letting the virus run wild would protect us is unlikely to be valid. The antibody results coming in suggest that only a small proportion of people have been infected by SARS-CoV-2. In the UK, only an estimated 6.8% of people have had the virus; for France, the figure is just 4.4%.

This means that we are far away from achieving herd immunity. It also suggests that the virus does indeed have the relatively high fatality rate that we’ve estimated.

This raises doubts that letting the virus burn itself out would be a sensible, safe and ethical answer to the COVID-19 problem. It would be safer to imagine a future where we can live side by side with SARS-CoV-2.

Yet the virus that caused the original Sars disease – SARS-CoV-1 – no longer haunts us. What can its disappearance tell us about the likelihood of living in a world without SARS-CoV-2?

Total confirmed COVID-19 deaths and cases across the world
There have been almost 7 million cases worldwide. Image: Our World in Data

Why the original Sars disappeared

It was evident by early 2004 that the Sars outbreak had ended. Starting in 2002, this epidemic lasted about one and a half years, infecting at least 8,000 people and killing 10% of them. Although it mostly affected east Asian countries, by its end Sars had spread worldwide.

In the midst of the turmoil, there were fears that Sars could become a serious pandemic. The virus was passed on by respiratory transmission, had spread internationally and had the ability to cause significant disease.

In its final days, the outbreak bounced between humans and animals in wet markets across China. There would be a couple of smaller outbreaks linked to laboratory-acquired virus transmissions, but nobody would die from these.

Why did the original Sars epidemic come to end? Well, SARS-CoV-1 did not burn itself out. Rather, the outbreak was largely brought under control by simple public health measures. Testing people with symptoms (fever and respiratory problems), isolating and quarantining suspected cases, and restricting travel all had an effect.

SARS-CoV-1 was most transmissible when patients were sick, and so by isolating those with symptoms, you could effectively prevent onward spread. Nearly everybody on the planet would remain susceptible to Sars in the decades following its disappearance.

Enter COVID-19

It is clear that our response to SARS-CoV-1 led to the extinction of that lineage of viruses in humans. But we also knew that very similar viruses continued to exist in bats. It’s possible that a very closely related Sars-like virus could emerge in the not-too-distant future.

Of course, this is what happened in late 2019, when SARS-CoV-2 jumped into humans. In a few short months it had erupted into a pandemic, infecting millions of people worldwide and killing around 1% of those infected. While this new human coronavirus is distinct from the original Sars virus, is it related.

Coronavirus china virus health healthcare who world health organization disease deaths pandemic epidemic worries concerns Health virus contagious contagion viruses diseases disease lab laboratory doctor health dr nurse medical medicine drugs vaccines vaccinations inoculations technology testing test medicinal biotechnology biotech biology chemistry physics microscope research influenza flu cold common cold bug risk symptomes respiratory china iran italy europe asia america south america north washing hands wash hands coughs sneezes spread spreading precaution precautions health warning covid 19 cov SARS 2019ncov wuhan sarscow wuhanpneumonia  pneumonia outbreak patients unhealthy fatality mortality elderly old elder age serious death deathly deadly
People can transmit SARS-CoV-2 before they develop symptoms. Image: EPA-EFE

In a similar timeframe to the original Sars, SARS-CoV-2 has proved to be more contagious but seemingly less deadly than its cousin was nearly 20 years ago. An additional – and critical – concern is that SARS-CoV-2 is efficiently spread before people get sick. This makes traditional symptomatic-based public health restrictions, which worked well for Sars, largely incapable of containing COVID-19.

Challenges in eradication

In essence, this ease of transmission means that SARS-CoV-2 is infinitely more challenging to control. We also have a poor understanding of whether catching and recovering from COVID-19 completely prevents you from catching the virus again and passing it on to others. Together, these factors mean that SARS-CoV-2 will most likely settle into the human population, becoming an endemic virus like its coronavirus cousins that are major causes of colds every winter.

While we haven’t been able to watch this “post-pandemic” scenario unfold for other human coronaviruses (although we strongly suspect this to have occurred in the not too distant past), we have ample evidence that this occurs with other viral infections. Over the last 100 years or so we have had five influenza pandemics, and descendants of the most recent pandemic influenza virus (H1N1 from 2009) continue to circulate in the population more than a decade later.

Given that we do not know how long natural immunity to COVID-19 lasts, nor whether it is capable of blocking infection completely or only symptoms, it’s not clear that SARS-CoV-2 could ever burn itself out. Therefore, our only option remains to suppress COVID-19 as much as possible until we have a safe and effective vaccine available to the masses.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Feeding the future: why Renovation and Reinvention are key to saving our food system

Juliana Weltman Glezer

June 13, 2024

About Us



Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum