Food and Water

Increasing production of aquatic foods is a win-win for people and planet

A plate of seafood - including fish, shrimp and mussels.

Currently, billions of people suffer from one or more forms of malnutrition, but greater seafood production could help.

Chris Sweeney
Senior Media Relations Manager & Senior Science Writer and Editor, Harvard T.H. Chan School of Public Health
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Food and Water?
The Big Picture
Explore and monitor how Food Security is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Beyond the ocean

  • Sustainably ramping up the production of seafood could help address global malnutrition, a new study says.
  • Currently, billions of people suffer from one or more forms of malnutrition and half the world’s children have micronutrient deficiencies.

Nutrition researchers have long touted the health benefits of fish such as salmon, cod, and herring. But the world’s waterways, from the depths of the oceans to the cutbanks of rivers to tropical reefs, offer up an incredibly diverse bounty of food sources that people around the world depend on.

To better understand the nutritional benefits of the full spectrum of aquatic foods, Harvard T.H. Chan School of Public Health’s Christopher Golden and colleagues created individual nutrient profiles for more than 3,750 species, ranging from water spinach to clams and cockles to sockeye salmon. The nutrient information is contained in the newly created Aquatic Foods Composition Database, which is open-access and available for download.

The study, published on September 15, 2021 in Nature, determined the top seven categories of nutrient-rich animal-source foods are all aquatic and include pelagic fish (sardines, herring, and other species), bivalves, and salmonids (salmon, trout, and related fish). Sustainably ramping up production and consumption of these foods through aquaculture (or farming in the ocean), supply chain improvements, and better fisheries management is critical to addressing staggering global levels of malnutrition and associated micronutrient deficiencies, Golden said.

Future of Food Agriculture, Food and Beverage The Ocean Beyond the ocean
Aquatic (blue) and terrestrial (green) food richness assessed as a ratio of concentrations of each nutrient per 100 g to the daily recommended nutrient intake. Image: Nature

Currently, billions of people suffer from one or more forms of malnutrition and half the world’s children have micronutrient deficiencies. Public health experts and policy makers have increasingly focused on the importance of sustainable and healthy diets to overcome these challenges, but many analyses emphasize terrestrial food sources and tend to frame aquatic foods as a largely monolithic category of “seafood or fish.” This oversimplified categorization results in aquatic foods being undervalued as a nutritional solution and often overlooks the myriad micronutrients they offer, according to the researchers.

Have you read?

“Aquatic foods seem to be a unique win-win,” said Golden, assistant professor of nutrition and planetary health. “They have very high nutrient richness and also can be produced with relatively low environmental impacts in comparison to terrestrial meats.”

To provide a more robust and nuanced understanding of the potential nutritional benefits of aquatic foods, Golden and colleagues built the Aquatic Foods Composition Database to characterize levels of hundreds of nutrients—including minerals (calcium, iron, and zinc, among others), vitamins, and fatty acids—across 3,753 aquatic food species.

In addition to documenting the nutritional profiles of aquatic foods, the researchers wanted to know how different levels of global aquatic food production and consumption would affect human nutrition at the population level. To learn more, they examined two scenarios: a baseline scenario that featured moderate growth in aquatic food production and a high-production scenario in which aquatic food supplies are increased by 15.5 metric tons—or approximately 8% over current levels—by 2030.

The high-production scenario resulted in significantly higher intake of DHA+EPA (types of omega-3 long-chain polyunsaturated fatty acids), calcium, iron, and vitamin B12 and prevented 166 million nutrient deficiencies. In this scenario, aquatic foods accounted for 13.7% of global protein intake and 2.2% of all calories consumed.

The study and the Aquatic Foods Composition Database have important implications for nutrition and fishery management policies across the world, Golden said. For example, if calcium deficiency is an issue in Turkey, the country may want to consider increasing the consumption of herring, sardines, or other small pelagic fish, which are rich sources of the mineral. If vitamin A deficiency is an issue in Brazil, it may make sense for the country to promote the production of oysters or the consumption of sardines, both of which are high in vitamin A.

“In an effort to formulate food systems that will nourish the world while staying within the ecological limits of our planetary boundaries, aquatic food production is a sensible path forward,” Golden said.

The study was part of the Blue Food Assessment, a comprehensive examination of the role of aquatic foods in building healthy, sustainable, and equitable food systems. Other Harvard Chan School researchers who contributed to the study included Simone Passarelli, Daniel Viana, Alon Shepon, Eric Rimm, Goodarz Danaei, and Heather Kelahan. Camille DeSisto also contributed while an undergraduate at Harvard College.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Food and WaterIndustries in DepthNature and Biodiversity
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Industry government collaboration on agritech can empower global agriculture

Abhay Pareek and Drishti Kumar

April 23, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum