Climate Action

Here's why cold-blooded animals are especially threatened by the climate crisis

Sunbathing reptile

The body temperatures of reptiles are expected to rise as global temperatures increase as a result of the climate crisis.. Image: Unsplash/Linus Mimietz

Lesley Alton
Research Fellow, Monash University
Vanessa Kellermann
Research Fellow, Monash University
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Climate Action?
The Big Picture
Explore and monitor how Climate Crisis is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Climate Crisis

Loading...
  • Cold-blooded animals rely on the thermal conditions of their environment to regulate their body temperature.
  • Therefore, as the planet warms, they are expected to need more energy, scientists say.
  • But a new study suggests temperature is not the only environmental factor affecting the future energy needs of cold-blooded animals.
  • In fact, their metabolic rate is influenced by various factors, including body size, activity levels and body temperature, the researchers explain.
  • Their findings suggest cold-blooded animals will need even more energy in a warmer world than previously thought, which may increase their extinction risk.

All animals need energy to live. They use it to breathe, circulate blood, digest food and move. Young animals use energy to grow, and later in life, to reproduce.

Increased body temperature increases the rate at which an animal uses energy. Because cold-blooded animals rely on the thermal conditions of their environment to regulate their body temperature, they’re expected to need more energy as the planet warms.

However, our new research, published today in Nature Climate Change, suggests temperature is not the only environmental factor affecting the future energy needs of cold-blooded animals. How they interact with other species will also play a role.

Our findings suggest cold-blooded animals will need even more energy in a warmer world than previously thought. This may increase their extinction risk.

Baby green turtle hatchling breaking out of its egg.
Young animals use energy to grow, and later in life, to reproduce. Image: WWF/© Roger Leguen

What we already know

The amount of energy animals use in a given amount of time is called their metabolic rate.

Metabolic rate is influenced by a variety of factors, including body size and activity levels. Larger animals have higher metabolic rates than smaller animals, and active animals have higher metabolic rates than inactive animals.

Metabolic rate also depends on body temperature. This is because temperature affects the rate at which the biochemical reactions involved in energy metabolism proceed. Generally, if an animal’s body temperature increases, its metabolic rate will accelerate exponentially.

Most animals alive today are cold-blooded, or “ectotherms”. Insects, worms, fish, crustaceans, amphibians and reptiles – basically all creatures except mammals and birds – are ectotherms.

As human-induced climate change raises global temperatures, the body temperatures of cold-blooded animals are also expected to rise.

Discover

How is the World Economic Forum fighting the climate crisis?

Researchers say the metabolic rate of some land-based ectotherms may have already increased by between 3.5% and 12% due to climate warming that’s already occurred. But this prediction doesn’t account for the animals’ capacity to physiologically “acclimate” to warmer temperatures.

Acclimation refers to an animal’s ability to remodel its physiology to cope with a change in its environment.

But rarely can acclimation fully negate the effect of temperature on metabolic processes. For this reason, by the end of the century land-based ectotherms are still predicted to have metabolic rates about 20% to 30% higher than they are now.

Having a higher metabolic rate means that animals will need more food. This means they might starve if more food is not available, and leaves them less energy to find a mate and reproduce.

Open mouth of crocodile
The body temperatures of cold-blooded animals are expected to rise along with global temperatures. Image: Unsplash/thomascouillard

Our research

Previous research attempts to understand the energetic costs of climate warming for ectotherms were limited in one important respect. They predominantly used animals studied in relatively simple laboratory environments where the only challenge they faced was a change in temperature.

However, animals face many other challenges in nature. This includes interacting with other species, such as competing for food and predator-prey relationships.

Even though species interact all the time in nature, we rarely study how this affects metabolic rates.

We wanted to examine how species interactions might alter predictions about the energetic costs of climate warming for cold-blooded animals. To do this, we turned to the fruit fly (from the genus Drosophila).

Fruit fly species lay their eggs in rotting plant material. The larvae that hatch from these eggs interact and compete for food.

Our study involved rearing fruit fly species alone or together at different temperatures. We found when two species of fruit fly larvae compete for food at warmer temperatures, they were more active as adults than adults that didn’t compete with other species as larvae. This means they also used more energy.

From this, we used modelling to deduce that species interactions at warmer global temperatures increase the future energy needs of fruit flies by between 3% and 16%.

These findings suggest previous studies have underestimated the energetic cost of climate warming for ectotherms. That means purely physiological approaches to understanding the consequences of climate change for cold-blooded animals are likely to be insufficient.

Picture of green tree python.
Previous studies have underestimated the energetic cost of climate warming for ectotherms. Image: Unsplash/davidclode

Let’s get real

Understanding the energy needs of animals is important for understanding how they’ll survive, reproduce and evolve in challenging environments.

In a warmer world, hotter ectotherms will need more energy to survive and reproduce. If there is not enough food to meet their bodies’ energy demands, their extinction risk may increase.

Clearly, we must more accurately predict how climate warming will threaten biodiversity. This means studying the responses of animals to temperature change under more realistic conditions.

Have you read?
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Climate ActionNature and Biodiversity
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Here are 5 lessons on how to prioritise clean air in businesses

Vaishali Nigam Sinha and Nadine Sterley

September 17, 2024

1:41

About Us

Events

Media

Partners & Members

  • Sign in
  • Join Us

Language editions

Privacy Policy & Terms of Service

Sitemap

© 2024 World Economic Forum