Ocean

We can predict the effects of climate change by the salt in our oceans

a team of researchers take samples from the artic ocean

Salty areas of the ocean getting saltier and fresh areas getting fresher. Image: REUTERS/Kathryn Hansen/NASA

William John Gould
Emeritus Fellow, Marine Physics and Ocean Climate, National Oceanography Centre
Robert Marsh
Professor of Oceanography and Climate, University of Southampton
Simon Alasdair Josey
Professor of Ocean-Atmosphere Interaction, National Oceanography Centre
Stuart Cunningham
Professor of Ocean Circulation and Climate, Scottish Association for Marine Science
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Ocean?
The Big Picture
Explore and monitor how Ocean is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Ocean

Loading...
  • Extremely wet or dry weather is likely to becoming more common as climate change intensifies.
  • Roughly every 1°C temperature rise increases the amount of moisture the atmosphere can store by 7%, making greater rainfall extremes likely.
  • A new research technique uses the salinity of the ocean at its surface to forecast how seasonal precipitation over land will change.
  • The research showed that the trend of salty areas of the ocean getting saltier and fresh areas getting fresher.
  • This water cycle has been intensifying since the Victorian era, making floods, droughts and wildfires more frequent and intense.

Floods have caused unprecedented damage in Europe recently, while in the Chinese city of Zhengzhou, the equivalent of a year’s worth of average rainfall fell in just three days. In stark contrast, extreme heat and droughts have spawned wildfires and caused hundreds of deaths in northwest America.

This kind of extremely wet or dry weather is likely to becoming more common as climate change intensifies. This is because in a warmer world, the amount of moisture that the atmosphere can hold will increase. As a rough rule-of-thumb, for every 1°C temperature rise, the amount of moisture the atmosphere can store increases by as much as 7%.

More moisture means greater rainfall extremes. Perversely, it also means that dry regions may lose more water to the atmosphere through evaporation, and so droughts could lengthen and intensify.

Knowing how rainfall varied in the past can help scientists predict future changes, and the longer the record, the more valuable it is. But how can we assess how worldwide rainfall patterns have changed over decades and even centuries, given that we have only recently been able to make accurate global measurements thanks to satellite technology?

A new technique uses the salinity of the ocean at its surface to forecast how seasonal precipitation over land will change. The ocean’s average surface salinity is close to 35g of salt for each kilogram of seawater. But areas in the subtropics, where lots of water evaporates, are saltiest, while the polar regions and tropics are less salty, reflecting how much snow and rain they tend to get. Essentially, scientists have worked out a way to use the ocean as an enormous rain gauge.

Have you read?

Measuring rainfall

Using measurements from research ships and buoys, scientists have shown that since the 1950s, the salty areas of the ocean have become saltier and the fresh areas fresher. This confirms that the global water cycle of evaporation and precipitation has intensified over the past 70 years.

But in order to understand how climate change will accelerate this process, it would help to know what ocean salinities were like early in the industrial age, before scientific observations of the global ocean were available.

Happily, there were two pioneering round-the-world oceanographic voyages in the 1870s. That of HMS Challenger (1872-6), led by Sir John Murray, is widely regarded as marking the start of large-scale marine science. Its many reports document new discoveries in marine biology and geology as well as ocean chemistry and physics.

Less well known is the voyage of the German Navy’s SMS Gazelle (1874-6) that made similar measurements to the Challenger. Neither ship measured salinity – a poorly defined concept in those days – but they did carefully measure the specific gravity of seawater samples.

Discover

What's the World Economic Forum doing about the ocean?

We converted these gravity values to salinity, allowing us to compare changes in the saltiness of the ocean that occurred before and after the 1950s. Our research showed that the trend of salty areas of the ocean getting saltier and fresh areas getting fresher also held true between the 1870s and the 1950s.

However, the rate of change over those 80 years, early in the industrial era, was half the rate between the 1950s and the present day. In simple terms, the trend is speeding up, matching the acceleration of sea surface temperature changes over the past 150 years. The water cycle has been intensifying since the Victorian era, making floods, droughts and wildfires more frequent and intense.

a chart showing the salinity changes in the ocean since the 1950s.
Salinity changes in the ocean since the 1950s. Image: Nature Communications in Earth and Environment, CC BY

Unravelling the complicated relationship between ocean surface salinity, rainfall and sea and air temperatures uses complex models of the ocean and atmosphere, run on the biggest computers. We can be certain that global temperatures will continue to rise with the continued emission of greenhouse gases. And our confidence in scientific predictions of future floods and droughts can also increase if those same models reproduce the changes in ocean salinity that have been measured as far back as the 19th century, as well as the faster changes since the mid-20th century.

As recent extreme weather events have shown, this is not just of academic interest – it will determine the course of millions of lives.

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
OceanClimate ChangeFuture of the Environment
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

From reserves to revenue: How marine protected areas can drive economic growth

Mark John Costello

April 8, 2024

2:00

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum