Climate Change

Animals are changing their body shapes to cope with climate change

A macaw flies over buildings with the Avila mountain behind in Caracas

Some birds have grown longer beaks to counter higher temperatures. Image: REUTERS/Jorge Silva

Sara Ryding
PhD Candidate, Deakin University
Matthew Symonds
Associate professor, Deakin University
Share:
Our Impact
What's the World Economic Forum doing to accelerate action on Climate Change?
The Big Picture
Explore and monitor how Climate Change is affecting economies, industries and global issues
A hand holding a looking glass by a lake
Crowdsource Innovation
Get involved with our crowdsourced digital platform to deliver impact at scale
Stay up to date:

Climate Change

  • A study has found that animals are adapting to climate change by changing the shape of their bodies, to regulate their internal temperature.
  • The research examined how certain animals have changed the size of their ears, tails, beaks and other appendages to deal with the heat.
  • Animals also deal with global warming in various ways, with some moving to cooler areas or changing the timing of migration and breeding seasons.
  • The study concluded that best way to protect species from these changes is by reducing greenhouse gas emissions to prevent global warming.

Global warming is a big challenge for warm-blooded animals, which must maintain a constant internal body temperature. As anyone who’s experienced heatstroke can tell you, our bodies become severely stressed when we overheat.

Animals are dealing with global warming in various ways. Some move to cooler areas, such as closer to the poles or to higher ground. Some change the timing of key life events such as breeding and migration, so they take place at cooler times. And others evolve to change their body size to cool down more quickly.

Our new research examined another way animal species cope with climate change: by changing the size of their ears, tails, beaks and other appendages. We reviewed the published literature and found examples of animals increasing appendage size in parallel with climate change and associated temperature increases.

In doing so, we identified multiple examples of animals that are most likely “shape-shifters” – including species in Australia. The pattern is widespread, and suggests climate warming may result in fundamental changes to animal form.

Adhering to Allen’s rule

It’s well known that animals use their appendages to regulate their internal temperature. African elephants, for example, pump warm blood to their large ears, which they then flap to disperse heat. The beaks of birds perform a similar function – blood flow can be diverted to the bill when the bird is hot. This heat-dispersing function is depicted in the thermal image of a king parrot below, which shows the beak is warmer than the rest of the body.

All this means there are advantages to bigger appendages in warmer environments. In fact, as far back as the 1870s, American zoologist Joel Allen noted in colder climates, warm-blooded animals – also known as endotherms – tended to have smaller appendages while those in warmer climates tend to have larger ones.

Have you read?

This pattern became known as Allen’s rule, which has since been supported by studies of birds and mammals.

Biological patterns such as Allen’s rule can also help make predictions about how animals will evolve as the climate warms. Our research set out to find examples of animal shape-shifting over the past century, consistent with climatic warming and Allen’s rule.

a picture of a parrot under thermal imaging
Thermal image of a king parrot, showing that the beak is warmer than the rest of the body. Image: Alexandra McQueen

Which animals are changing?

We found most documented examples of shape-shifting involve birds – specifically, increases in beak size.

This includes several species of Australian parrots. Studies show the beak size of gang-gang cockatoos and red-rumped parrots has increased by between 4% and 10% since since 1871.

Mammal appendages are also increasing in size. For example, in the masked shrew, tail and leg length have increased significantly since 1950. And in the great roundleaf bat, wing size increased by 1.64% over the same period.

The variety of examples indicates shape-shifting is happening in different types of appendages and in a variety of animals, in many parts of the world. But more studies are needed to determine which kinds of animals are most affected.

Other uses of appendages

Of course, animal appendages have uses far beyond regulating body temperature. This means scientists have sometimes focused on other reasons that might explain changes in animal body shape.

For example, studies have shown the average beak size of the Galapagos medium ground finch has changed over time in response to seed size, which is in turn influenced by rainfall. Our research examined previously collected data to determine if temperature also influenced changes in beak size of these finches.

These data do demonstrate rainfall (and, by extension, seed size) determines beak size. After drier summers, survival of small-beaked birds was reduced.

But we found clear evidence that birds with smaller beaks are also less likely to survive hotter summers. This effect on survival was stronger than that observed with rainfall. This tells us the role of temperature may be as important as other uses of appendages, such as feeding, in driving changes in appendage size.

Our research also suggests we can make some predictions about which species are most likely to change appendage size in response to increasing temperatures – namely, those that adhere to Allen’s rule.

Discover

What’s the World Economic Forum doing about climate change?

These include (with some caveats) starlings, song sparrows, and a host of seabirds and small mammals, such as South American gracile opossums.

Why does shape-shifting matter?

Our research contributes to scientific understanding of how wildlife will respond to climate change. Apart from improving our capacity to predict the impacts of climate change, this will enable us to identify which species are most vulnerable and require conservation priority.

Last month’s report by the Intergovernmental Panel on Climate Change showed we have very little time to avert catastrophic global warming.

While our research shows some animals are adapting to climate change, many will not. For example, some birds may have to maintain a particular diet which means they cannot change their beak shape. Other animals may simply not be able to evolve in time.

So while predicting how wildlife will respond to climate change is important, the best way to protect species into the future is to dramatically reduce greenhouse gas emissions and prevent as much global warming as possible.

Loading...
Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

Sign up for free

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:
Climate ChangeEducationNature and Biodiversity
Share:
World Economic Forum logo
Global Agenda

The Agenda Weekly

A weekly update of the most important issues driving the global agenda

Subscribe today

You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy.

Why parametric insurance could be a climate disaster aid solution in the Global South

Thomas Johansmeyer

February 28, 2024

About Us

Events

Media

Partners & Members

  • Join Us

Language Editions

Privacy Policy & Terms of Service

© 2024 World Economic Forum